Home
last modified time | relevance | path

Searched refs:square (Results 1 – 10 of 10) sorted by relevance

/openssl/test/
H A Dbntests.pl56 my $square = bn($s{'Square'});
58 return if $square == $a->bmul($a);
H A Dbntest.c1433 BIGNUM *a = NULL, *square = NULL, *zero = NULL, *ret = NULL; in file_square() local
1438 || !TEST_ptr(square = getBN(s, "Square")) in file_square()
1446 || !equalBN("A^2", square, ret) in file_square()
1448 || !equalBN("A * A", square, ret) in file_square()
1449 || !TEST_true(BN_div(ret, remainder, square, a, ctx)) in file_square()
1456 if (!TEST_true(BN_sqrt(ret, square, ctx)) in file_square()
1461 if (!TEST_BN_eq_zero(square)) { in file_square()
1463 || !TEST_true(BN_copy(tmp, square))) in file_square()
1483 BN_free(square); in file_square()
/openssl/crypto/bn/
H A Dbn_prime.c30 #define square(x) ((BN_ULONG)(x) * (BN_ULONG)(x)) macro
519 && square(primes[i]) > BN_get_word(rnd) + delta) in probable_prime()
598 && square(primes[i]) > BN_get_word(rnd) + delta) in probable_prime_dh()
/openssl/doc/man3/
H A DBN_add.pod60 BN_sqr() takes the square of I<a> and places the result in I<r>
89 BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
92 BN_mod_sqrt() returns the modular square root of I<a> such that
H A DOSSL_HTTP_parse_url.pod56 where IPv6 addresses must be enclosed in square brackets C<[> and C<]>.
/openssl/doc/man5/
H A Dconfig.pod89 begins with the section name in square brackets, and ends when a new
103 detail below. As a reminder, the square brackets shown in this example
/openssl/crypto/err/
H A Dopenssl.txt190 BN_R_NOT_A_SQUARE:111:not a square
426 CONF_R_MISSING_CLOSE_SQUARE_BRACKET:100:missing close square bracket
/openssl/Configurations/
H A DREADME.md465 The expression in square brackets is interpreted as a string in perl,
/openssl/
H A DINSTALL.md106 One or several words in square brackets separated by pipe characters
127 **Optional Arguments** are enclosed in square brackets.
H A DCHANGES.md12797 is really the square of the return value. (Previously,
15432 * New function BN_mod_sqrt for computing square roots modulo a prime

Completed in 86 milliseconds