/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef __SOFTFP__ #define ARM_ABI_INFO " ABI:softfp" #else #define ARM_ABI_INFO " ABI:hardfp" #endif SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) { #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) return "ARMv7" SLJIT_CPUINFO ARM_ABI_INFO; #elif (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) return "ARMv6" SLJIT_CPUINFO ARM_ABI_INFO; #else #error "Internal error: Unknown ARM architecture" #endif } /* Length of an instruction word. */ typedef sljit_u32 sljit_ins; /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 4) #define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) #define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) /* In ARM instruction words. Cache lines are usually 32 byte aligned. */ #define CONST_POOL_ALIGNMENT 8 #define CONST_POOL_EMPTY 0xffffffff #define ALIGN_INSTRUCTION(ptr) \ (sljit_ins*)(((sljit_ins)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_ins)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_ins)) - 1)) #define MAX_DIFFERENCE(max_diff) \ (((max_diff) / (sljit_s32)sizeof(sljit_ins)) - (CONST_POOL_ALIGNMENT - 1)) /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 1, 2, 3, 11, 10, 9, 8, 7, 6, 5, 4, 13, 12, 14, 15 }; static const sljit_u8 freg_map[((SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) << 1) + 1] = { 0, 0, 1, 2, 3, 4, 5, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 0, 1, 2, 3, 4, 5, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6 }; static const sljit_u8 freg_ebit_map[((SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) << 1) + 1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; #define RM(rm) ((sljit_ins)reg_map[rm]) #define RM8(rm) ((sljit_ins)reg_map[rm] << 8) #define RD(rd) ((sljit_ins)reg_map[rd] << 12) #define RN(rn) ((sljit_ins)reg_map[rn] << 16) #define VM(vm) (((sljit_ins)freg_map[vm]) | ((sljit_ins)freg_ebit_map[vm] << 5)) #define VD(vd) (((sljit_ins)freg_map[vd] << 12) | ((sljit_ins)freg_ebit_map[vd] << 22)) #define VN(vn) (((sljit_ins)freg_map[vn] << 16) | ((sljit_ins)freg_ebit_map[vn] << 7)) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ /* The instruction includes the AL condition. INST_NAME - CONDITIONAL remove this flag. */ #define COND_MASK 0xf0000000 #define CONDITIONAL 0xe0000000 #define PUSH_POOL 0xff000000 #define ADC 0xe0a00000 #define ADD 0xe0800000 #define AND 0xe0000000 #define B 0xea000000 #define BIC 0xe1c00000 #define BKPT 0xe1200070 #define BL 0xeb000000 #define BLX 0xe12fff30 #define BX 0xe12fff10 #define CLZ 0xe16f0f10 #define CMN 0xe1600000 #define CMP 0xe1400000 #define EOR 0xe0200000 #define LDR 0xe5100000 #define LDR_POST 0xe4100000 #define LDREX 0xe1900f9f #define LDREXB 0xe1d00f9f #define LDREXH 0xe1f00f9f #define MOV 0xe1a00000 #define MUL 0xe0000090 #define MVN 0xe1e00000 #define NOP 0xe1a00000 #define ORR 0xe1800000 #define PUSH 0xe92d0000 #define POP 0xe8bd0000 #define REV 0xe6bf0f30 #define REV16 0xe6bf0fb0 #define RSB 0xe0600000 #define RSC 0xe0e00000 #define SBC 0xe0c00000 #define SMULL 0xe0c00090 #define STR 0xe5000000 #define STREX 0xe1800f90 #define STREXB 0xe1c00f90 #define STREXH 0xe1e00f90 #define SUB 0xe0400000 #define SXTB 0xe6af0070 #define SXTH 0xe6bf0070 #define TST 0xe1000000 #define UMULL 0xe0800090 #define UXTB 0xe6ef0070 #define UXTH 0xe6ff0070 #define VABS_F32 0xeeb00ac0 #define VADD_F32 0xee300a00 #define VAND 0xf2000110 #define VCMP_F32 0xeeb40a40 #define VCVT_F32_S32 0xeeb80ac0 #define VCVT_F32_U32 0xeeb80a40 #define VCVT_F64_F32 0xeeb70ac0 #define VCVT_S32_F32 0xeebd0ac0 #define VDIV_F32 0xee800a00 #define VDUP 0xee800b10 #define VDUP_s 0xf3b00c00 #define VEOR 0xf3000110 #define VLD1 0xf4200000 #define VLD1_r 0xf4a00c00 #define VLD1_s 0xf4a00000 #define VLDR_F32 0xed100a00 #define VMOV_F32 0xeeb00a40 #define VMOV 0xee000a10 #define VMOV2 0xec400a10 #define VMOV_i 0xf2800010 #define VMOV_s 0xee000b10 #define VMOVN 0xf3b20200 #define VMRS 0xeef1fa10 #define VMUL_F32 0xee200a00 #define VNEG_F32 0xeeb10a40 #define VORR 0xf2200110 #define VPOP 0xecbd0b00 #define VPUSH 0xed2d0b00 #define VSHLL 0xf2800a10 #define VSHR 0xf2800010 #define VSRA 0xf2800110 #define VST1 0xf4000000 #define VST1_s 0xf4800000 #define VSTR_F32 0xed000a00 #define VSUB_F32 0xee300a40 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) /* Arm v7 specific instructions. */ #define MOVT 0xe3400000 #define MOVW 0xe3000000 #define RBIT 0xe6ff0f30 #endif #if (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) static sljit_s32 function_check_is_freg(struct sljit_compiler *compiler, sljit_s32 fr, sljit_s32 is_32) { if (compiler->scratches == -1) return 0; if (is_32 && fr >= SLJIT_F64_SECOND(SLJIT_FR0)) fr -= SLJIT_F64_SECOND(0); return (fr >= SLJIT_FR0 && fr < (SLJIT_FR0 + compiler->fscratches)) || (fr > (SLJIT_FS0 - compiler->fsaveds) && fr <= SLJIT_FS0) || (fr >= SLJIT_TMP_FREGISTER_BASE && fr < (SLJIT_TMP_FREGISTER_BASE + SLJIT_NUMBER_OF_TEMPORARY_FLOAT_REGISTERS)); } #endif /* SLJIT_ARGUMENT_CHECKS */ #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) static sljit_s32 push_cpool(struct sljit_compiler *compiler) { /* Pushing the constant pool into the instruction stream. */ sljit_ins* inst; sljit_uw* cpool_ptr; sljit_uw* cpool_end; sljit_s32 i; /* The label could point the address after the constant pool. */ if (compiler->last_label && compiler->last_label->size == compiler->size) compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1; SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE); inst = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!inst); compiler->size++; *inst = 0xff000000 | compiler->cpool_fill; for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) { inst = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!inst); compiler->size++; *inst = 0; } cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; while (cpool_ptr < cpool_end) { inst = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!inst); compiler->size++; *inst = *cpool_ptr++; } compiler->cpool_diff = CONST_POOL_EMPTY; compiler->cpool_fill = 0; return SLJIT_SUCCESS; } static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins inst) { sljit_ins* ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static sljit_s32 push_inst_with_literal(struct sljit_compiler *compiler, sljit_ins inst, sljit_uw literal) { sljit_ins* ptr; sljit_uw cpool_index = CPOOL_SIZE; sljit_uw* cpool_ptr; sljit_uw* cpool_end; sljit_u8* cpool_unique_ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); else if (compiler->cpool_fill > 0) { cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; cpool_unique_ptr = compiler->cpool_unique; do { if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) { cpool_index = (sljit_uw)(cpool_ptr - compiler->cpool); break; } cpool_ptr++; cpool_unique_ptr++; } while (cpool_ptr < cpool_end); } if (cpool_index == CPOOL_SIZE) { /* Must allocate a new entry in the literal pool. */ if (compiler->cpool_fill < CPOOL_SIZE) { cpool_index = compiler->cpool_fill; compiler->cpool_fill++; } else { FAIL_IF(push_cpool(compiler)); cpool_index = 0; compiler->cpool_fill = 1; } } SLJIT_ASSERT((inst & 0xfff) == 0); ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | cpool_index; compiler->cpool[cpool_index] = literal; compiler->cpool_unique[cpool_index] = 0; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static sljit_s32 push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_ins inst, sljit_uw literal) { sljit_ins* ptr; if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE)) FAIL_IF(push_cpool(compiler)); SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0); ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | compiler->cpool_fill; compiler->cpool[compiler->cpool_fill] = literal; compiler->cpool_unique[compiler->cpool_fill] = 1; compiler->cpool_fill++; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 prepare_blx(struct sljit_compiler *compiler) { /* Place for at least two instruction (doesn't matter whether the first has a literal). */ if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088))) return push_cpool(compiler); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_blx(struct sljit_compiler *compiler) { /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */ SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092)); SLJIT_ASSERT(reg_map[TMP_REG1] != 14); return push_inst(compiler, BLX | RM(TMP_REG1)); } static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size) { sljit_uw diff; sljit_uw ind; sljit_uw counter = 0; sljit_uw* clear_const_pool = const_pool; sljit_uw* clear_const_pool_end = const_pool + cpool_size; SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT); /* Set unused flag for all literals in the constant pool. I.e.: unused literals can belong to branches, which can be encoded as B or BL. We can "compress" the constant pool by discarding these literals. */ while (clear_const_pool < clear_const_pool_end) *clear_const_pool++ = (sljit_uw)(-1); while (last_pc_patch < code_ptr) { /* Data transfer instruction with Rn == r15. */ if ((*last_pc_patch & 0x0e0f0000) == 0x040f0000) { diff = (sljit_uw)(const_pool - last_pc_patch); ind = (*last_pc_patch) & 0xfff; /* Must be a load instruction with immediate offset. */ SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20))); if ((sljit_s32)const_pool[ind] < 0) { const_pool[ind] = counter; ind = counter; counter++; } else ind = const_pool[ind]; SLJIT_ASSERT(diff >= 1); if (diff >= 2 || ind > 0) { diff = (diff + (sljit_uw)ind - 2) << 2; SLJIT_ASSERT(diff <= 0xfff); *last_pc_patch = (*last_pc_patch & ~(sljit_uw)0xfff) | diff; } else *last_pc_patch = (*last_pc_patch & ~(sljit_uw)(0xfff | (1 << 23))) | 0x004; } last_pc_patch++; } return counter; } /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */ struct future_patch { struct future_patch* next; sljit_s32 index; sljit_s32 value; }; static sljit_s32 resolve_const_pool_index(struct sljit_compiler *compiler, struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr) { sljit_u32 value; struct future_patch *curr_patch, *prev_patch; SLJIT_UNUSED_ARG(compiler); /* Using the values generated by patch_pc_relative_loads. */ if (!*first_patch) value = cpool_start_address[cpool_current_index]; else { curr_patch = *first_patch; prev_patch = NULL; while (1) { if (!curr_patch) { value = cpool_start_address[cpool_current_index]; break; } if ((sljit_uw)curr_patch->index == cpool_current_index) { value = (sljit_uw)curr_patch->value; if (prev_patch) prev_patch->next = curr_patch->next; else *first_patch = curr_patch->next; SLJIT_FREE(curr_patch, compiler->allocator_data); break; } prev_patch = curr_patch; curr_patch = curr_patch->next; } } if ((sljit_sw)value >= 0) { if (value > cpool_current_index) { curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch), compiler->allocator_data); if (!curr_patch) { while (*first_patch) { curr_patch = *first_patch; *first_patch = (*first_patch)->next; SLJIT_FREE(curr_patch, compiler->allocator_data); } return SLJIT_ERR_ALLOC_FAILED; } curr_patch->next = *first_patch; curr_patch->index = (sljit_sw)value; curr_patch->value = (sljit_sw)cpool_start_address[value]; *first_patch = curr_patch; } cpool_start_address[value] = *buf_ptr; } return SLJIT_SUCCESS; } #else static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins inst) { sljit_ins* ptr; ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_imm(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | ((sljit_u32)imm & 0xfff))); return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | (((sljit_u32)imm >> 16) & 0xfff)); } #endif static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code, sljit_sw executable_offset) { sljit_sw diff; if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (jump->flags & IS_BL) code_ptr--; if (jump->flags & JUMP_ADDR) diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2) - executable_offset); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; if (jump->flags & IS_BL) { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK); jump->flags |= PATCH_B; return 1; } } else { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK); jump->flags |= PATCH_B; } } #else /* !SLJIT_CONFIG_ARM_V6 */ if (jump->flags & JUMP_ADDR) diff = ((sljit_sw)jump->u.target - (sljit_sw)code_ptr - executable_offset); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)code_ptr); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; if (diff <= 0x01ffffff && diff >= -0x02000000) { code_ptr -= 2; *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK); jump->flags |= PATCH_B; return 1; } #endif /* SLJIT_CONFIG_ARM_V6 */ return 0; } static SLJIT_INLINE void inline_set_jump_addr(sljit_uw jump_ptr, sljit_sw executable_offset, sljit_uw new_addr, sljit_s32 flush_cache) { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) sljit_ins *ptr = (sljit_ins*)jump_ptr; sljit_ins *inst = (sljit_ins*)ptr[0]; sljit_ins mov_pc = ptr[1]; sljit_s32 bl = (mov_pc & 0x0000f000) != RD(TMP_PC); sljit_sw diff = (sljit_sw)(((sljit_sw)new_addr - (sljit_sw)(inst + 2) - executable_offset) >> 2); SLJIT_UNUSED_ARG(executable_offset); if (diff <= 0x7fffff && diff >= -0x800000) { /* Turn to branch. */ if (!bl) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 0); } inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 0); } inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff); inst[1] = NOP; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } } } else { /* Get the position of the constant. */ if (mov_pc & (1 << 23)) ptr = inst + ((mov_pc & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != mov_pc) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + (!bl ? 1 : 2), 0); } inst[0] = mov_pc; if (!bl) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { inst[1] = BLX | RM(TMP_REG1); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } } } if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(ptr, ptr + 1, 0); } *ptr = new_addr; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(ptr, ptr + 1, 1); } } #else /* !SLJIT_CONFIG_ARM_V6 */ sljit_ins *inst = (sljit_ins*)jump_ptr; SLJIT_UNUSED_ARG(executable_offset); SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 0); } inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif /* SLJIT_CONFIG_ARM_V6 */ } static sljit_uw get_imm(sljit_uw imm); static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm); static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg); static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_sw executable_offset, sljit_uw new_constant, sljit_s32 flush_cache) { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) sljit_ins *ptr = (sljit_ins*)addr; sljit_ins *inst = (sljit_ins*)ptr[0]; sljit_uw ldr_literal = ptr[1]; sljit_uw src2; SLJIT_UNUSED_ARG(executable_offset); src2 = get_imm(new_constant); if (src2) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 0); } *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } src2 = get_imm(~new_constant); if (src2) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 0); } *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } if (ldr_literal & (1 << 23)) ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != ldr_literal) { if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 0); } *inst = ldr_literal; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 1, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(ptr, ptr + 1, 0); } *ptr = new_constant; if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(ptr, ptr + 1, 1); } #else /* !SLJIT_CONFIG_ARM_V6 */ sljit_ins *inst = (sljit_ins*)addr; SLJIT_UNUSED_ARG(executable_offset); SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 0); } inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff); if (flush_cache) { SLJIT_UPDATE_WX_FLAGS(inst, inst + 2, 1); inst = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif /* SLJIT_CONFIG_ARM_V6 */ } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_ins *code; sljit_ins *code_ptr; sljit_ins *buf_ptr; sljit_ins *buf_end; sljit_uw size; sljit_uw word_count; sljit_uw next_addr; sljit_sw executable_offset; sljit_uw addr; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) sljit_uw cpool_size; sljit_uw cpool_skip_alignment; sljit_uw cpool_current_index; sljit_ins *cpool_start_address; sljit_ins *last_pc_patch; struct future_patch *first_patch; #endif struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; struct sljit_put_label *put_label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); /* Second code generation pass. */ #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) size = compiler->size + (compiler->patches << 1); if (compiler->cpool_fill > 0) size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1; #else /* !SLJIT_CONFIG_ARM_V6 */ size = compiler->size; #endif /* SLJIT_CONFIG_ARM_V6 */ code = (sljit_ins*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_ins), compiler->exec_allocator_data); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) cpool_size = 0; cpool_skip_alignment = 0; cpool_current_index = 0; cpool_start_address = NULL; first_patch = NULL; last_pc_patch = code; #endif /* SLJIT_CONFIG_ARM_V6 */ code_ptr = code; word_count = 0; next_addr = 1; executable_offset = SLJIT_EXEC_OFFSET(code); label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; put_label = compiler->put_labels; if (label && label->size == 0) { label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); label = label->next; } do { buf_ptr = (sljit_ins*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 2); do { word_count++; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (cpool_size > 0) { if (cpool_skip_alignment > 0) { buf_ptr++; cpool_skip_alignment--; } else { if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code, compiler->exec_allocator_data); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; if (++cpool_current_index >= cpool_size) { SLJIT_ASSERT(!first_patch); cpool_size = 0; if (label && label->size == word_count) { /* Points after the current instruction. */ label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); label->size = (sljit_uw)(code_ptr - code); label = label->next; next_addr = compute_next_addr(label, jump, const_, put_label); } } } } else if ((*buf_ptr & 0xff000000) != PUSH_POOL) { #endif /* SLJIT_CONFIG_ARM_V6 */ *code_ptr = *buf_ptr++; if (next_addr == word_count) { SLJIT_ASSERT(!label || label->size >= word_count); SLJIT_ASSERT(!jump || jump->addr >= word_count); SLJIT_ASSERT(!const_ || const_->addr >= word_count); SLJIT_ASSERT(!put_label || put_label->addr >= word_count); /* These structures are ordered by their address. */ if (jump && jump->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (detect_jump_type(jump, code_ptr, code, executable_offset)) code_ptr--; jump->addr = (sljit_uw)code_ptr; #else /* !SLJIT_CONFIG_ARM_V6 */ jump->addr = (sljit_uw)(code_ptr - 2); if (detect_jump_type(jump, code_ptr, code, executable_offset)) code_ptr -= 2; #endif /* SLJIT_CONFIG_ARM_V6 */ jump = jump->next; } if (label && label->size == word_count) { /* code_ptr can be affected above. */ label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr + 1, executable_offset); label->size = (sljit_uw)((code_ptr + 1) - code); label = label->next; } if (const_ && const_->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) const_->addr = (sljit_uw)code_ptr; #else /* !SLJIT_CONFIG_ARM_V6 */ const_->addr = (sljit_uw)(code_ptr - 1); #endif /* SLJIT_CONFIG_ARM_V6 */ const_ = const_->next; } if (put_label && put_label->addr == word_count) { SLJIT_ASSERT(put_label->label); put_label->addr = (sljit_uw)code_ptr; put_label = put_label->next; } next_addr = compute_next_addr(label, jump, const_, put_label); } code_ptr++; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) } else { /* Fortunately, no need to shift. */ cpool_size = *buf_ptr++ & ~PUSH_POOL; SLJIT_ASSERT(cpool_size > 0); cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size); if (cpool_current_index > 0) { /* Unconditional branch. */ *code_ptr = B | (((sljit_ins)(cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL); code_ptr = (sljit_ins*)(cpool_start_address + cpool_current_index); } cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1; cpool_current_index = 0; last_pc_patch = code_ptr; } #endif /* SLJIT_CONFIG_ARM_V6 */ } while (buf_ptr < buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); SLJIT_ASSERT(!put_label); #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) SLJIT_ASSERT(cpool_size == 0); if (compiler->cpool_fill > 0) { cpool_start_address = ALIGN_INSTRUCTION(code_ptr); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill); if (cpool_current_index > 0) code_ptr = (sljit_ins*)(cpool_start_address + cpool_current_index); buf_ptr = compiler->cpool; buf_end = buf_ptr + compiler->cpool_fill; cpool_current_index = 0; while (buf_ptr < buf_end) { if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code, compiler->exec_allocator_data); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; cpool_current_index++; } SLJIT_ASSERT(!first_patch); } #endif jump = compiler->jumps; while (jump) { buf_ptr = (sljit_ins*)jump->addr; if (jump->flags & PATCH_B) { addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr + 2, executable_offset); if (!(jump->flags & JUMP_ADDR)) { SLJIT_ASSERT(jump->flags & JUMP_LABEL); SLJIT_ASSERT((sljit_sw)(jump->u.label->addr - addr) <= 0x01ffffff && (sljit_sw)(jump->u.label->addr - addr) >= -0x02000000); *buf_ptr |= ((jump->u.label->addr - addr) >> 2) & 0x00ffffff; } else { SLJIT_ASSERT((sljit_sw)(jump->u.target - addr) <= 0x01ffffff && (sljit_sw)(jump->u.target - addr) >= -0x02000000); *buf_ptr |= ((jump->u.target - addr) >> 2) & 0x00ffffff; } } else if (jump->flags & SLJIT_REWRITABLE_JUMP) { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) jump->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_ins)buf_ptr; code_ptr[1] = *buf_ptr; inline_set_jump_addr((sljit_uw)code_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); code_ptr += 2; #else /* !SLJIT_CONFIG_ARM_V6 */ inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif /* SLJIT_CONFIG_ARM_V6 */ } else { #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (jump->flags & IS_BL) buf_ptr--; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; #else /* !SLJIT_CONFIG_ARM_V6 */ inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif /* SLJIT_CONFIG_ARM_V6 */ } jump = jump->next; } #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) const_ = compiler->consts; while (const_) { buf_ptr = (sljit_ins*)const_->addr; const_->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_ins)buf_ptr; code_ptr[1] = *buf_ptr; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; /* Set the value again (can be a simple constant). */ inline_set_const((sljit_uw)code_ptr, executable_offset, *buf_ptr, 0); code_ptr += 2; const_ = const_->next; } #endif /* SLJIT_CONFIG_ARM_V6 */ put_label = compiler->put_labels; while (put_label) { addr = put_label->label->addr; buf_ptr = (sljit_ins*)put_label->addr; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) SLJIT_ASSERT((buf_ptr[0] & 0xffff0000) == 0xe59f0000); buf_ptr[((buf_ptr[0] & 0xfff) >> 2) + 2] = addr; #else /* !SLJIT_CONFIG_ARM_V6 */ SLJIT_ASSERT((buf_ptr[-1] & 0xfff00000) == MOVW && (buf_ptr[0] & 0xfff00000) == MOVT); buf_ptr[-1] |= ((addr << 4) & 0xf0000) | (addr & 0xfff); buf_ptr[0] |= ((addr >> 12) & 0xf0000) | ((addr >> 16) & 0xfff); #endif /* SLJIT_CONFIG_ARM_V6 */ put_label = put_label->next; } SLJIT_ASSERT(code_ptr - code <= (sljit_s32)size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_offset = executable_offset; compiler->executable_size = (sljit_uw)(code_ptr - code) * sizeof(sljit_uw); code = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); code_ptr = (sljit_ins*)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); SLJIT_CACHE_FLUSH(code, code_ptr); SLJIT_UPDATE_WX_FLAGS(code, code_ptr, 1); return code; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type) { switch (feature_type) { case SLJIT_HAS_FPU: case SLJIT_HAS_F64_AS_F32_PAIR: #ifdef SLJIT_IS_FPU_AVAILABLE return (SLJIT_IS_FPU_AVAILABLE) != 0; #else /* Available by default. */ return 1; #endif /* SLJIT_IS_FPU_AVAILABLE */ case SLJIT_HAS_SIMD: #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) return 0; #else #ifdef SLJIT_IS_FPU_AVAILABLE return (SLJIT_IS_FPU_AVAILABLE) != 0; #else /* Available by default. */ return 1; #endif /* SLJIT_IS_FPU_AVAILABLE */ #endif /* SLJIT_CONFIG_ARM_V6 */ case SLJIT_SIMD_REGS_ARE_PAIRS: case SLJIT_HAS_CLZ: case SLJIT_HAS_ROT: case SLJIT_HAS_CMOV: case SLJIT_HAS_REV: case SLJIT_HAS_PREFETCH: case SLJIT_HAS_COPY_F32: case SLJIT_HAS_COPY_F64: case SLJIT_HAS_ATOMIC: return 1; case SLJIT_HAS_CTZ: #if defined(SLJIT_CONFIG_ARM_V6) && SLJIT_CONFIG_ARM_V6 return 2; #else return 1; #endif /* SLJIT_CONFIG_ARM_V6 */ default: return 0; } } /* --------------------------------------------------------------------- */ /* Entry, exit */ /* --------------------------------------------------------------------- */ /* Creates an index in data_transfer_insts array. */ #define WORD_SIZE 0x00 #define BYTE_SIZE 0x01 #define HALF_SIZE 0x02 #define PRELOAD 0x03 #define SIGNED 0x04 #define LOAD_DATA 0x08 /* Flag bits for emit_op. */ #define ALLOW_IMM 0x10 #define ALLOW_INV_IMM 0x20 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM) #define ALLOW_NEG_IMM 0x40 #define ALLOW_DOUBLE_IMM 0x80 /* s/l - store/load (1 bit) u/s - signed/unsigned (1 bit) w/b/h/N - word/byte/half/NOT allowed (2 bit) Storing signed and unsigned values are the same operations. */ static const sljit_ins data_transfer_insts[16] = { /* s u w */ 0xe5000000 /* str */, /* s u b */ 0xe5400000 /* strb */, /* s u h */ 0xe10000b0 /* strh */, /* s u N */ 0x00000000 /* not allowed */, /* s s w */ 0xe5000000 /* str */, /* s s b */ 0xe5400000 /* strb */, /* s s h */ 0xe10000b0 /* strh */, /* s s N */ 0x00000000 /* not allowed */, /* l u w */ 0xe5100000 /* ldr */, /* l u b */ 0xe5500000 /* ldrb */, /* l u h */ 0xe11000b0 /* ldrh */, /* l u p */ 0xf5500000 /* preload */, /* l s w */ 0xe5100000 /* ldr */, /* l s b */ 0xe11000d0 /* ldrsb */, /* l s h */ 0xe11000f0 /* ldrsh */, /* l s N */ 0x00000000 /* not allowed */, }; #define EMIT_DATA_TRANSFER(type, add, target_reg, base_reg, arg) \ (data_transfer_insts[(type) & 0xf] | ((add) << 23) | RD(target_reg) | RN(base_reg) | (sljit_ins)(arg)) /* Normal ldr/str instruction. Type2: ldrsb, ldrh, ldrsh */ #define IS_TYPE1_TRANSFER(type) \ (data_transfer_insts[(type) & 0xf] & 0x04000000) #define TYPE2_TRANSFER_IMM(imm) \ (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22)) #define EMIT_FPU_OPERATION(opcode, mode, dst, src1, src2) \ ((sljit_ins)(opcode) | (sljit_ins)(mode) | VD(dst) | VM(src1) | VN(src2)) /* Flags for emit_op: */ /* Arguments are swapped. */ #define ARGS_SWAPPED 0x01 /* Inverted immediate. */ #define INV_IMM 0x02 /* Source and destination is register. */ #define MOVE_REG_CONV 0x04 /* Unused return value. */ #define UNUSED_RETURN 0x08 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */ #define SET_FLAGS (1 << 20) /* dst: reg src1: reg src2: reg or imm (if allowed) SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */ #define SRC2_IMM (1 << 25) static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w); SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_uw imm, offset; sljit_s32 i, tmp, size, word_arg_count; sljit_s32 saved_arg_count = SLJIT_KEPT_SAVEDS_COUNT(options); #ifdef __SOFTFP__ sljit_u32 float_arg_count; #else sljit_u32 old_offset, f32_offset; sljit_u32 remap[3]; sljit_u32 *remap_ptr = remap; #endif CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); imm = 0; tmp = SLJIT_S0 - saveds; for (i = SLJIT_S0 - saved_arg_count; i > tmp; i--) imm |= (sljit_uw)1 << reg_map[i]; for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) imm |= (sljit_uw)1 << reg_map[i]; SLJIT_ASSERT(reg_map[TMP_REG2] == 14); /* Push saved and temporary registers multiple registers: stmdb sp!, {..., lr} single register: str reg, [sp, #-4]! */ if (imm != 0) FAIL_IF(push_inst(compiler, PUSH | (1 << 14) | imm)); else FAIL_IF(push_inst(compiler, 0xe52d0004 | RD(TMP_REG2))); /* Stack must be aligned to 8 bytes: */ size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - saved_arg_count, 1); if (fsaveds > 0 || fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) { if ((size & SSIZE_OF(sw)) != 0) { FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | sizeof(sljit_sw))); size += SSIZE_OF(sw); } if (fsaveds + fscratches >= SLJIT_NUMBER_OF_FLOAT_REGISTERS) { FAIL_IF(push_inst(compiler, VPUSH | VD(SLJIT_FS0) | ((sljit_ins)SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS << 1))); } else { if (fsaveds > 0) FAIL_IF(push_inst(compiler, VPUSH | VD(SLJIT_FS0) | ((sljit_ins)fsaveds << 1))); if (fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) FAIL_IF(push_inst(compiler, VPUSH | VD(fscratches) | ((sljit_ins)(fscratches - (SLJIT_FIRST_SAVED_FLOAT_REG - 1)) << 1))); } } local_size = ((size + local_size + 0x7) & ~0x7) - size; compiler->local_size = local_size; if (options & SLJIT_ENTER_REG_ARG) arg_types = 0; arg_types >>= SLJIT_ARG_SHIFT; word_arg_count = 0; saved_arg_count = 0; #ifdef __SOFTFP__ SLJIT_COMPILE_ASSERT(SLJIT_FR0 == 1, float_register_index_start); offset = 0; float_arg_count = 0; while (arg_types) { switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (offset & 0x7) offset += sizeof(sljit_sw); if (offset < 4 * sizeof(sljit_sw)) FAIL_IF(push_inst(compiler, VMOV2 | (offset << 10) | ((offset + sizeof(sljit_sw)) << 14) | float_arg_count)); else FAIL_IF(push_inst(compiler, VLDR_F32 | 0x800100 | RN(SLJIT_SP) | (float_arg_count << 12) | ((offset + (sljit_ins)size - 4 * sizeof(sljit_sw)) >> 2))); float_arg_count++; offset += sizeof(sljit_f64) - sizeof(sljit_sw); break; case SLJIT_ARG_TYPE_F32: if (offset < 4 * sizeof(sljit_sw)) FAIL_IF(push_inst(compiler, VMOV | (float_arg_count << 16) | (offset << 10))); else FAIL_IF(push_inst(compiler, VLDR_F32 | 0x800000 | RN(SLJIT_SP) | (float_arg_count << 12) | ((offset + (sljit_ins)size - 4 * sizeof(sljit_sw)) >> 2))); float_arg_count++; break; default: word_arg_count++; if (!(arg_types & SLJIT_ARG_TYPE_SCRATCH_REG)) { tmp = SLJIT_S0 - saved_arg_count; saved_arg_count++; } else if (word_arg_count - 1 != (sljit_s32)(offset >> 2)) tmp = word_arg_count; else break; if (offset < 4 * sizeof(sljit_sw)) FAIL_IF(push_inst(compiler, MOV | RD(tmp) | (offset >> 2))); else FAIL_IF(push_inst(compiler, LDR | 0x800000 | RN(SLJIT_SP) | RD(tmp) | (offset + (sljit_ins)size - 4 * sizeof(sljit_sw)))); break; } offset += sizeof(sljit_sw); arg_types >>= SLJIT_ARG_SHIFT; } compiler->args_size = offset; #else offset = SLJIT_FR0; old_offset = SLJIT_FR0; f32_offset = 0; while (arg_types) { switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (offset != old_offset) *remap_ptr++ = EMIT_FPU_OPERATION(VMOV_F32, SLJIT_32, offset, old_offset, 0); old_offset++; offset++; break; case SLJIT_ARG_TYPE_F32: if (f32_offset != 0) { *remap_ptr++ = EMIT_FPU_OPERATION(VMOV_F32, 0x20, offset, f32_offset, 0); f32_offset = 0; } else { if (offset != old_offset) *remap_ptr++ = EMIT_FPU_OPERATION(VMOV_F32, 0, offset, old_offset, 0); f32_offset = old_offset; old_offset++; } offset++; break; default: if (!(arg_types & SLJIT_ARG_TYPE_SCRATCH_REG)) { FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S0 - saved_arg_count) | RM(SLJIT_R0 + word_arg_count))); saved_arg_count++; } word_arg_count++; break; } arg_types >>= SLJIT_ARG_SHIFT; } SLJIT_ASSERT((sljit_uw)(remap_ptr - remap) <= sizeof(remap)); while (remap_ptr > remap) FAIL_IF(push_inst(compiler, *(--remap_ptr))); #endif if (local_size > 0) FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM | ALLOW_DOUBLE_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, local_size)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size; CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); size = GET_SAVED_REGISTERS_SIZE(scratches, saveds - SLJIT_KEPT_SAVEDS_COUNT(options), 1); /* Doubles are saved, so alignment is unaffected. */ if ((size & SSIZE_OF(sw)) != 0 && (fsaveds > 0 || fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG)) size += SSIZE_OF(sw); compiler->local_size = ((size + local_size + 0x7) & ~0x7) - size; return SLJIT_SUCCESS; } static sljit_s32 emit_add_sp(struct sljit_compiler *compiler, sljit_uw imm) { sljit_uw imm2 = get_imm(imm); if (imm2 == 0) return emit_op(compiler, SLJIT_ADD, ALLOW_IMM | ALLOW_DOUBLE_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, (sljit_sw)imm); return push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | imm2); } static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler, sljit_s32 frame_size) { sljit_s32 local_size, fscratches, fsaveds, i, tmp; sljit_s32 restored_reg = 0; sljit_s32 lr_dst = TMP_PC; sljit_uw reg_list = 0; SLJIT_ASSERT(reg_map[TMP_REG2] == 14 && frame_size <= 128); local_size = compiler->local_size; fscratches = compiler->fscratches; fsaveds = compiler->fsaveds; if (fsaveds > 0 || fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) { if (local_size > 0) FAIL_IF(emit_add_sp(compiler, (sljit_uw)local_size)); if (fsaveds + fscratches >= SLJIT_NUMBER_OF_FLOAT_REGISTERS) { FAIL_IF(push_inst(compiler, VPOP | VD(SLJIT_FS0) | ((sljit_ins)SLJIT_NUMBER_OF_SAVED_FLOAT_REGISTERS << 1))); } else { if (fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) FAIL_IF(push_inst(compiler, VPOP | VD(fscratches) | ((sljit_ins)(fscratches - (SLJIT_FIRST_SAVED_FLOAT_REG - 1)) << 1))); if (fsaveds > 0) FAIL_IF(push_inst(compiler, VPOP | VD(SLJIT_FS0) | ((sljit_ins)fsaveds << 1))); } local_size = GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1) & 0x7; } if (frame_size < 0) { lr_dst = TMP_REG2; frame_size = 0; } else if (frame_size > 0) { SLJIT_ASSERT(frame_size == 1 || (frame_size & 0x7) == 0); lr_dst = 0; frame_size &= ~0x7; } if (lr_dst != 0) reg_list |= (sljit_uw)1 << reg_map[lr_dst]; tmp = SLJIT_S0 - compiler->saveds; i = SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options); if (tmp < i) { restored_reg = i; do { reg_list |= (sljit_uw)1 << reg_map[i]; } while (--i > tmp); } i = compiler->scratches; if (i >= SLJIT_FIRST_SAVED_REG) { restored_reg = i; do { reg_list |= (sljit_uw)1 << reg_map[i]; } while (--i >= SLJIT_FIRST_SAVED_REG); } if (lr_dst == TMP_REG2 && reg_list == 0) { restored_reg = TMP_REG2; lr_dst = 0; } if (lr_dst == 0 && (reg_list & (reg_list - 1)) == 0) { /* The local_size does not include the saved registers. */ tmp = 0; if (reg_list != 0) { tmp = 2; if (local_size <= 0xfff) { if (local_size == 0) { SLJIT_ASSERT(restored_reg != TMP_REG2); if (frame_size == 0) return push_inst(compiler, LDR_POST | RN(SLJIT_SP) | RD(restored_reg) | 0x800008); if (frame_size > 2 * SSIZE_OF(sw)) return push_inst(compiler, LDR_POST | RN(SLJIT_SP) | RD(restored_reg) | (sljit_ins)(frame_size - (2 * SSIZE_OF(sw)))); } FAIL_IF(push_inst(compiler, LDR | 0x800000 | RN(SLJIT_SP) | RD(restored_reg) | (sljit_ins)local_size)); tmp = 1; } else if (frame_size == 0) { frame_size = (restored_reg == TMP_REG2) ? SSIZE_OF(sw) : 2 * SSIZE_OF(sw); tmp = 3; } /* Place for the saved register. */ if (restored_reg != TMP_REG2) local_size += SSIZE_OF(sw); } /* Place for the lr register. */ local_size += SSIZE_OF(sw); if (frame_size > local_size) FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 25) | (sljit_ins)(frame_size - local_size))); else if (frame_size < local_size) FAIL_IF(emit_add_sp(compiler, (sljit_uw)(local_size - frame_size))); if (tmp <= 1) return SLJIT_SUCCESS; if (tmp == 2) { frame_size -= SSIZE_OF(sw); if (restored_reg != TMP_REG2) frame_size -= SSIZE_OF(sw); return push_inst(compiler, LDR | 0x800000 | RN(SLJIT_SP) | RD(restored_reg) | (sljit_ins)frame_size); } tmp = (restored_reg == TMP_REG2) ? 0x800004 : 0x800008; return push_inst(compiler, LDR_POST | RN(SLJIT_SP) | RD(restored_reg) | (sljit_ins)tmp); } if (local_size > 0) FAIL_IF(emit_add_sp(compiler, (sljit_uw)local_size)); /* Pop saved and temporary registers multiple registers: ldmia sp!, {...} single register: ldr reg, [sp], #4 */ if ((reg_list & (reg_list - 1)) == 0) { SLJIT_ASSERT(lr_dst != 0); SLJIT_ASSERT(reg_list == (sljit_uw)1 << reg_map[lr_dst]); return push_inst(compiler, LDR_POST | RN(SLJIT_SP) | RD(lr_dst) | 0x800004); } FAIL_IF(push_inst(compiler, POP | reg_list)); if (frame_size > 0) return push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 25) | ((sljit_ins)frame_size - sizeof(sljit_sw))); if (lr_dst != 0) return SLJIT_SUCCESS; return push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | (1 << 25) | sizeof(sljit_sw)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler) { CHECK_ERROR(); CHECK(check_sljit_emit_return_void(compiler)); return emit_stack_frame_release(compiler, 0); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_return_to(compiler, src, srcw)); if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1)); src = TMP_REG1; srcw = 0; } else if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(src))); src = TMP_REG1; srcw = 0; } FAIL_IF(emit_stack_frame_release(compiler, 1)); SLJIT_SKIP_CHECKS(compiler); return sljit_emit_ijump(compiler, SLJIT_JUMP, src, srcw); } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_uw dst, sljit_uw src1, sljit_uw src2) { sljit_s32 is_masked; sljit_uw shift_type; switch (op) { case SLJIT_MOV: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (dst != src2) { if (src2 & SRC2_IMM) { return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return push_inst(compiler, MOV | RD(dst) | RM(src2)); } return SLJIT_SUCCESS; case SLJIT_MOV_U8: case SLJIT_MOV_S8: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (flags & MOVE_REG_CONV) return push_inst(compiler, (op == SLJIT_MOV_U8 ? UXTB : SXTB) | RD(dst) | RM(src2)); if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return SLJIT_SUCCESS; case SLJIT_MOV_U16: case SLJIT_MOV_S16: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (flags & MOVE_REG_CONV) return push_inst(compiler, (op == SLJIT_MOV_U16 ? UXTH : SXTH) | RD(dst) | RM(src2)); if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return SLJIT_SUCCESS; case SLJIT_CLZ: SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2))); return SLJIT_SUCCESS; case SLJIT_CTZ: SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) FAIL_IF(push_inst(compiler, RSB | SRC2_IMM | RD(TMP_REG1) | RN(src2) | 0)); FAIL_IF(push_inst(compiler, AND | RD(TMP_REG2) | RN(src2) | RM(TMP_REG1))); FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(TMP_REG2))); FAIL_IF(push_inst(compiler, CMP | SET_FLAGS | SRC2_IMM | RN(dst) | 32)); return push_inst(compiler, (EOR ^ 0xf0000000) | SRC2_IMM | RD(dst) | RN(dst) | 0x1f); #else /* !SLJIT_CONFIG_ARM_V6 */ FAIL_IF(push_inst(compiler, RBIT | RD(dst) | RM(src2))); return push_inst(compiler, CLZ | RD(dst) | RM(dst)); #endif /* SLJIT_CONFIG_ARM_V6 */ case SLJIT_REV: case SLJIT_REV_U32: case SLJIT_REV_S32: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); return push_inst(compiler, REV | RD(dst) | RM(src2)); case SLJIT_REV_U16: case SLJIT_REV_S16: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED) && src2 != TMP_REG1 && dst != TMP_REG1); FAIL_IF(push_inst(compiler, REV16 | RD(dst) | RM(src2))); if (dst == TMP_REG2 || (src2 == TMP_REG2 && op == SLJIT_REV_U16)) return SLJIT_SUCCESS; return push_inst(compiler, (op == SLJIT_REV_U16 ? UXTH : SXTH) | RD(dst) | RM(dst)); case SLJIT_ADD: SLJIT_ASSERT(!(flags & INV_IMM)); if ((flags & (UNUSED_RETURN | ARGS_SWAPPED)) == UNUSED_RETURN) return push_inst(compiler, CMN | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); return push_inst(compiler, ADD | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_ADDC: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, ADC | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SUB: SLJIT_ASSERT(!(flags & INV_IMM)); if ((flags & (UNUSED_RETURN | ARGS_SWAPPED)) == UNUSED_RETURN) return push_inst(compiler, CMP | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SUB : RSB) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SUBC: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SBC : RSC) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_MUL: SLJIT_ASSERT(!(flags & INV_IMM)); SLJIT_ASSERT(!(src2 & SRC2_IMM)); compiler->status_flags_state = 0; if (!(flags & SET_FLAGS)) return push_inst(compiler, MUL | RN(dst) | RM8(src2) | RM(src1)); FAIL_IF(push_inst(compiler, SMULL | RN(TMP_REG1) | RD(dst) | RM8(src2) | RM(src1))); /* cmp TMP_REG1, dst asr #31. */ return push_inst(compiler, CMP | SET_FLAGS | RN(TMP_REG1) | RM(dst) | 0xfc0); case SLJIT_AND: if ((flags & (UNUSED_RETURN | INV_IMM)) == UNUSED_RETURN) return push_inst(compiler, TST | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); return push_inst(compiler, (!(flags & INV_IMM) ? AND : BIC) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_OR: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, ORR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_XOR: if (flags & INV_IMM) { SLJIT_ASSERT(src2 == SRC2_IMM); return push_inst(compiler, MVN | (flags & SET_FLAGS) | RD(dst) | RM(src1)); } return push_inst(compiler, EOR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SHL: case SLJIT_MSHL: shift_type = 0; is_masked = op == SLJIT_MSHL; break; case SLJIT_LSHR: case SLJIT_MLSHR: shift_type = 1; is_masked = op == SLJIT_MLSHR; break; case SLJIT_ASHR: case SLJIT_MASHR: shift_type = 2; is_masked = op == SLJIT_MASHR; break; case SLJIT_ROTL: if (compiler->shift_imm == 0x20) { FAIL_IF(push_inst(compiler, RSB | SRC2_IMM | RD(TMP_REG2) | RN(src2) | 0)); src2 = TMP_REG2; } else compiler->shift_imm = (sljit_uw)(-(sljit_sw)compiler->shift_imm) & 0x1f; /* fallthrough */ case SLJIT_ROTR: shift_type = 3; is_masked = 0; break; default: SLJIT_UNREACHABLE(); return SLJIT_SUCCESS; } SLJIT_ASSERT(!(flags & ARGS_SWAPPED) && !(flags & INV_IMM) && !(src2 & SRC2_IMM)); if (compiler->shift_imm != 0x20) { SLJIT_ASSERT(src1 == TMP_REG1); if (compiler->shift_imm != 0) return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | (compiler->shift_imm << 7) | (shift_type << 5) | RM(src2)); return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | RM(src2)); } SLJIT_ASSERT(src1 != TMP_REG2); if (is_masked) { FAIL_IF(push_inst(compiler, AND | RD(TMP_REG2) | RN(src2) | SRC2_IMM | 0x1f)); src2 = TMP_REG2; } return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | RM8(src2) | (sljit_ins)(shift_type << 5) | 0x10 | RM(src1)); } #undef EMIT_SHIFT_INS_AND_RETURN /* Tests whether the immediate can be stored in the 12 bit imm field. Returns with 0 if not possible. */ static sljit_uw get_imm(sljit_uw imm) { sljit_u32 rol; if (imm <= 0xff) return SRC2_IMM | imm; if (!(imm & 0xff000000)) { imm <<= 8; rol = 8; } else { imm = (imm << 24) | (imm >> 8); rol = 0; } if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) return SRC2_IMM | (imm >> 24) | (rol << 8); return 0; } static sljit_uw compute_imm(sljit_uw imm, sljit_uw* imm2) { sljit_uw mask; sljit_uw imm1; sljit_uw rol; /* Step1: Search a zero byte (8 continous zero bit). */ mask = 0xff000000; rol = 8; while (1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = 4 + (rol >> 1); break; } rol += 2; mask >>= 2; if (mask & 0x3) { /* rol by 8. */ imm = (imm << 8) | (imm >> 24); mask = 0xff00; rol = 24; while (1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = (rol >> 1) - 8; break; } rol += 2; mask >>= 2; if (mask & 0x3) return 0; } break; } } /* The low 8 bit must be zero. */ SLJIT_ASSERT(!(imm & 0xff)); if (!(imm & 0xff000000)) { imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8); *imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8); } else if (imm & 0xc0000000) { imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) *imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } else { if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) *imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } return imm1; } static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm) { sljit_uw tmp; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) sljit_uw imm1, imm2; #else /* !SLJIT_CONFIG_ARM_V6 */ if (!(imm & ~(sljit_uw)0xffff)) return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)); #endif /* SLJIT_CONFIG_ARM_V6 */ /* Create imm by 1 inst. */ tmp = get_imm(imm); if (tmp) return push_inst(compiler, MOV | RD(reg) | tmp); tmp = get_imm(~imm); if (tmp) return push_inst(compiler, MVN | RD(reg) | tmp); #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) /* Create imm by 2 inst. */ imm1 = compute_imm(imm, &imm2); if (imm1 != 0) { FAIL_IF(push_inst(compiler, MOV | RD(reg) | imm1)); return push_inst(compiler, ORR | RD(reg) | RN(reg) | imm2); } imm1 = compute_imm(~imm, &imm2); if (imm1 != 0) { FAIL_IF(push_inst(compiler, MVN | RD(reg) | imm1)); return push_inst(compiler, BIC | RD(reg) | RN(reg) | imm2); } /* Load integer. */ return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, reg, TMP_PC, 0), imm); #else /* !SLJIT_CONFIG_ARM_V6 */ FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff))); if (imm <= 0xffff) return SLJIT_SUCCESS; return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff)); #endif /* SLJIT_CONFIG_ARM_V6 */ } static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg) { sljit_uw imm, offset_reg, tmp; sljit_sw mask = IS_TYPE1_TRANSFER(flags) ? 0xfff : 0xff; sljit_sw sign = IS_TYPE1_TRANSFER(flags) ? 0x1000 : 0x100; SLJIT_ASSERT(arg & SLJIT_MEM); SLJIT_ASSERT((arg & REG_MASK) != tmp_reg || (arg == SLJIT_MEM1(tmp_reg) && argw >= -mask && argw <= mask)); if (SLJIT_UNLIKELY(!(arg & REG_MASK))) { tmp = (sljit_uw)(argw & (sign | mask)); tmp = (sljit_uw)((argw + (tmp <= (sljit_uw)sign ? 0 : sign)) & ~mask); FAIL_IF(load_immediate(compiler, tmp_reg, tmp)); argw -= (sljit_sw)tmp; tmp = 1; if (argw < 0) { argw = -argw; tmp = 0; } return push_inst(compiler, EMIT_DATA_TRANSFER(flags, tmp, reg, tmp_reg, (mask == 0xff) ? TYPE2_TRANSFER_IMM(argw) : argw)); } if (arg & OFFS_REG_MASK) { offset_reg = OFFS_REG(arg); arg &= REG_MASK; argw &= 0x3; if (argw != 0 && (mask == 0xff)) { FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | RM(offset_reg) | ((sljit_ins)argw << 7))); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, tmp_reg, TYPE2_TRANSFER_IMM(0))); } /* Bit 25: RM is offset. */ return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, RM(offset_reg) | (mask == 0xff ? 0 : (1 << 25)) | ((sljit_ins)argw << 7))); } arg &= REG_MASK; if (argw > mask) { tmp = (sljit_uw)(argw & (sign | mask)); tmp = (sljit_uw)((argw + (tmp <= (sljit_uw)sign ? 0 : sign)) & ~mask); imm = get_imm(tmp); if (imm) { FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | imm)); argw -= (sljit_sw)tmp; arg = tmp_reg; SLJIT_ASSERT(argw >= -mask && argw <= mask); } } else if (argw < -mask) { tmp = (sljit_uw)(-argw & (sign | mask)); tmp = (sljit_uw)((-argw + (tmp <= (sljit_uw)sign ? 0 : sign)) & ~mask); imm = get_imm(tmp); if (imm) { FAIL_IF(push_inst(compiler, SUB | RD(tmp_reg) | RN(arg) | imm)); argw += (sljit_sw)tmp; arg = tmp_reg; SLJIT_ASSERT(argw >= -mask && argw <= mask); } } if (argw <= mask && argw >= -mask) { if (argw >= 0) { if (mask == 0xff) argw = TYPE2_TRANSFER_IMM(argw); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, argw)); } argw = -argw; if (mask == 0xff) argw = TYPE2_TRANSFER_IMM(argw); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 0, reg, arg, argw)); } FAIL_IF(load_immediate(compiler, tmp_reg, (sljit_uw)argw)); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, RM(tmp_reg) | (mask == 0xff ? 0 : (1 << 25)))); } static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { /* src1 is reg or TMP_REG1 src2 is reg, TMP_REG2, or imm result goes to TMP_REG2, so put result can use TMP_REG1. */ /* We prefers register and simple consts. */ sljit_s32 dst_reg; sljit_s32 src1_reg = 0; sljit_s32 src2_reg = 0; sljit_s32 flags = HAS_FLAGS(op) ? SET_FLAGS : 0; sljit_s32 neg_op = 0; sljit_u32 imm2; op = GET_OPCODE(op); if (flags & SET_FLAGS) inp_flags &= ~ALLOW_DOUBLE_IMM; if (dst == TMP_REG2) flags |= UNUSED_RETURN; SLJIT_ASSERT(!(inp_flags & ALLOW_INV_IMM) || (inp_flags & ALLOW_IMM)); if (inp_flags & ALLOW_NEG_IMM) { switch (op) { case SLJIT_ADD: compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD; neg_op = SLJIT_SUB; break; case SLJIT_ADDC: compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD; neg_op = SLJIT_SUBC; break; case SLJIT_SUB: compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB; neg_op = SLJIT_ADD; break; case SLJIT_SUBC: compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB; neg_op = SLJIT_ADDC; break; } } do { if (!(inp_flags & ALLOW_IMM)) break; if (src2 == SLJIT_IMM) { src2_reg = (sljit_s32)get_imm((sljit_uw)src2w); if (src2_reg) break; if (inp_flags & ALLOW_INV_IMM) { src2_reg = (sljit_s32)get_imm(~(sljit_uw)src2w); if (src2_reg) { flags |= INV_IMM; break; } } if (neg_op != 0) { src2_reg = (sljit_s32)get_imm((neg_op == SLJIT_ADD || neg_op == SLJIT_SUB) ? (sljit_uw)-src2w : ~(sljit_uw)src2w); if (src2_reg) { op = neg_op | GET_ALL_FLAGS(op); break; } } } if (src1 == SLJIT_IMM) { src2_reg = (sljit_s32)get_imm((sljit_uw)src1w); if (src2_reg) { flags |= ARGS_SWAPPED; src1 = src2; src1w = src2w; break; } if (inp_flags & ALLOW_INV_IMM) { src2_reg = (sljit_s32)get_imm(~(sljit_uw)src1w); if (src2_reg) { flags |= ARGS_SWAPPED | INV_IMM; src1 = src2; src1w = src2w; break; } } if (neg_op >= SLJIT_SUB) { /* Note: additive operation (commutative). */ SLJIT_ASSERT(op == SLJIT_ADD || op == SLJIT_ADDC); src2_reg = (sljit_s32)get_imm((sljit_uw)-src1w); if (src2_reg) { src1 = src2; src1w = src2w; op = neg_op | GET_ALL_FLAGS(op); break; } } } } while(0); /* Source 1. */ if (FAST_IS_REG(src1)) src1_reg = src1; else if (src1 & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, TMP_REG1)); src1_reg = TMP_REG1; } else if (!(inp_flags & ALLOW_DOUBLE_IMM) || src2_reg != 0 || op == SLJIT_SUB || op == SLJIT_SUBC) { FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)src1w)); src1_reg = TMP_REG1; } /* Destination. */ dst_reg = FAST_IS_REG(dst) ? dst : TMP_REG2; if (op <= SLJIT_MOV_P) { if (dst & SLJIT_MEM) { if (inp_flags & BYTE_SIZE) inp_flags &= ~SIGNED; if (FAST_IS_REG(src2)) return emit_op_mem(compiler, inp_flags, src2, dst, dstw, TMP_REG2); } if (FAST_IS_REG(src2) && dst_reg != TMP_REG2) flags |= MOVE_REG_CONV; } /* Source 2. */ if (src2_reg == 0) { src2_reg = (op <= SLJIT_MOV_P) ? dst_reg : TMP_REG2; if (FAST_IS_REG(src2)) src2_reg = src2; else if (src2 & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, src2_reg, src2, src2w, TMP_REG2)); else if (!(inp_flags & ALLOW_DOUBLE_IMM)) FAIL_IF(load_immediate(compiler, src2_reg, (sljit_uw)src2w)); else { SLJIT_ASSERT(!(flags & SET_FLAGS)); if (src1_reg == 0) { FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)src1w)); src1_reg = TMP_REG1; } src2_reg = (sljit_s32)compute_imm((sljit_uw)src2w, &imm2); if (src2_reg == 0 && neg_op != 0) { src2_reg = (sljit_s32)compute_imm((sljit_uw)-src2w, &imm2); if (src2_reg != 0) op = neg_op; } if (src2_reg == 0) { FAIL_IF(load_immediate(compiler, TMP_REG2, (sljit_uw)src2w)); src2_reg = TMP_REG2; } else { FAIL_IF(emit_single_op(compiler, op, flags, (sljit_uw)dst_reg, (sljit_uw)src1_reg, (sljit_uw)src2_reg)); src1_reg = dst_reg; src2_reg = (sljit_s32)imm2; if (op == SLJIT_ADDC) op = SLJIT_ADD; else if (op == SLJIT_SUBC) op = SLJIT_SUB; } } } if (src1_reg == 0) { SLJIT_ASSERT((inp_flags & ALLOW_DOUBLE_IMM) && !(flags & SET_FLAGS)); src1_reg = (sljit_s32)compute_imm((sljit_uw)src1w, &imm2); if (src1_reg == 0 && neg_op != 0) { src1_reg = (sljit_s32)compute_imm((sljit_uw)-src1w, &imm2); if (src1_reg != 0) op = neg_op; } if (src1_reg == 0) { FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)src1w)); src1_reg = TMP_REG1; } else { FAIL_IF(emit_single_op(compiler, op, flags, (sljit_uw)dst_reg, (sljit_uw)src2_reg, (sljit_uw)src1_reg)); src1_reg = dst_reg; src2_reg = (sljit_s32)imm2; if (op == SLJIT_ADDC) op = SLJIT_ADD; } } FAIL_IF(emit_single_op(compiler, op, flags, (sljit_uw)dst_reg, (sljit_uw)src1_reg, (sljit_uw)src2_reg)); if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_op_mem(compiler, inp_flags, dst_reg, dst, dstw, TMP_REG1); } #ifdef __cplusplus extern "C" { #endif #if defined(__GNUC__) extern unsigned int __aeabi_uidivmod(unsigned int numerator, unsigned int denominator); extern int __aeabi_idivmod(int numerator, int denominator); #else #error "Software divmod functions are needed" #endif #ifdef __cplusplus } #endif SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { sljit_uw saved_reg_list[3]; sljit_sw saved_reg_count; CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: FAIL_IF(push_inst(compiler, BKPT)); break; case SLJIT_NOP: FAIL_IF(push_inst(compiler, NOP)); break; case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: return push_inst(compiler, (op == SLJIT_LMUL_UW ? UMULL : SMULL) | RN(SLJIT_R1) | RD(SLJIT_R0) | RM8(SLJIT_R0) | RM(SLJIT_R1)); case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); SLJIT_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 3); saved_reg_count = 0; if (compiler->scratches >= 4) saved_reg_list[saved_reg_count++] = 3; if (compiler->scratches >= 3) saved_reg_list[saved_reg_count++] = 2; if (op >= SLJIT_DIV_UW) saved_reg_list[saved_reg_count++] = 1; if (saved_reg_count > 0) { FAIL_IF(push_inst(compiler, STR | 0x2d0000 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */)); if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst(compiler, STR | 0x8d0004 | (saved_reg_list[1] << 12) /* str rX, [sp, #4] */)); } if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst(compiler, STR | 0x8d0008 | (saved_reg_list[2] << 12) /* str rX, [sp, #8] */)); } } #if defined(__GNUC__) FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM, ((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_ADDR(__aeabi_uidivmod) : SLJIT_FUNC_ADDR(__aeabi_idivmod)))); #else #error "Software divmod functions are needed" #endif if (saved_reg_count > 0) { if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst(compiler, LDR | 0x8d0008 | (saved_reg_list[2] << 12) /* ldr rX, [sp, #8] */)); } if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst(compiler, LDR | 0x8d0004 | (saved_reg_list[1] << 12) /* ldr rX, [sp, #4] */)); } return push_inst(compiler, (LDR ^ (1 << 24)) | 0x8d0000 | (sljit_ins)(saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */); } return SLJIT_SUCCESS; case SLJIT_ENDBR: case SLJIT_SKIP_FRAMES_BEFORE_RETURN: return SLJIT_SUCCESS; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV32: case SLJIT_MOV_P: return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_U8: return emit_op(compiler, SLJIT_MOV_U8, ALLOW_ANY_IMM | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src == SLJIT_IMM) ? (sljit_u8)srcw : srcw); case SLJIT_MOV_S8: return emit_op(compiler, SLJIT_MOV_S8, ALLOW_ANY_IMM | SIGNED | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src == SLJIT_IMM) ? (sljit_s8)srcw : srcw); case SLJIT_MOV_U16: return emit_op(compiler, SLJIT_MOV_U16, ALLOW_ANY_IMM | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src == SLJIT_IMM) ? (sljit_u16)srcw : srcw); case SLJIT_MOV_S16: return emit_op(compiler, SLJIT_MOV_S16, ALLOW_ANY_IMM | SIGNED | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src == SLJIT_IMM) ? (sljit_s16)srcw : srcw); case SLJIT_CLZ: case SLJIT_CTZ: case SLJIT_REV: case SLJIT_REV_U32: case SLJIT_REV_S32: return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_REV_U16: case SLJIT_REV_S16: return emit_op(compiler, op, HALF_SIZE, dst, dstw, TMP_REG1, 0, src, srcw); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 inp_flags; CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); switch (GET_OPCODE(op)) { case SLJIT_ADD: case SLJIT_ADDC: case SLJIT_SUB: case SLJIT_SUBC: return emit_op(compiler, op, ALLOW_IMM | ALLOW_NEG_IMM | ALLOW_DOUBLE_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_OR: return emit_op(compiler, op, ALLOW_IMM | ALLOW_DOUBLE_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_XOR: inp_flags = ALLOW_IMM | ALLOW_DOUBLE_IMM; if ((src1 == SLJIT_IMM && src1w == -1) || (src2 == SLJIT_IMM && src2w == -1)) { inp_flags |= ALLOW_INV_IMM; } return emit_op(compiler, op, inp_flags, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: case SLJIT_MSHL: case SLJIT_LSHR: case SLJIT_MLSHR: case SLJIT_ASHR: case SLJIT_MASHR: case SLJIT_ROTL: case SLJIT_ROTR: if (src2 == SLJIT_IMM) { compiler->shift_imm = src2w & 0x1f; return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w); } else { compiler->shift_imm = 0x20; return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); } } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, 1, 0, 0, src1, src1w, src2, src2w)); SLJIT_SKIP_CHECKS(compiler); return sljit_emit_op2(compiler, op, TMP_REG2, 0, src1, src1w, src2, src2w); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst_reg, sljit_s32 src1_reg, sljit_s32 src2_reg, sljit_s32 src3, sljit_sw src3w) { sljit_s32 is_left; CHECK_ERROR(); CHECK(check_sljit_emit_shift_into(compiler, op, dst_reg, src1_reg, src2_reg, src3, src3w)); op = GET_OPCODE(op); is_left = (op == SLJIT_SHL || op == SLJIT_MSHL); if (src1_reg == src2_reg) { SLJIT_SKIP_CHECKS(compiler); return sljit_emit_op2(compiler, is_left ? SLJIT_ROTL : SLJIT_ROTR, dst_reg, 0, src1_reg, 0, src3, src3w); } ADJUST_LOCAL_OFFSET(src3, src3w); /* Shift type of ROR is 3. */ if (src3 == SLJIT_IMM) { src3w &= 0x1f; if (src3w == 0) return SLJIT_SUCCESS; FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | RM(src1_reg) | ((sljit_ins)(is_left ? 0 : 1) << 5) | ((sljit_ins)src3w << 7))); src3w = (src3w ^ 0x1f) + 1; return push_inst(compiler, ORR | RD(dst_reg) | RN(dst_reg) | RM(src2_reg) | ((sljit_ins)(is_left ? 1 : 0) << 5) | ((sljit_ins)src3w << 7)); } if (src3 & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, src3, src3w, TMP_REG2)); src3 = TMP_REG2; } if (op == SLJIT_MSHL || op == SLJIT_MLSHR || dst_reg == src3) { FAIL_IF(push_inst(compiler, AND | SRC2_IMM | RD(TMP_REG2) | RN(src3) | 0x1f)); src3 = TMP_REG2; } FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | RM8(src3) | ((sljit_ins)(is_left ? 0 : 1) << 5) | 0x10 | RM(src1_reg))); FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(src2_reg) | ((sljit_ins)(is_left ? 1 : 0) << 5) | (1 << 7))); FAIL_IF(push_inst(compiler, EOR | SRC2_IMM | RD(TMP_REG2) | RN(src3) | 0x1f)); return push_inst(compiler, ORR | RD(dst_reg) | RN(dst_reg) | RM8(TMP_REG2) | ((sljit_ins)(is_left ? 1 : 0) << 5) | 0x10 | RM(TMP_REG1)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op_src(compiler, op, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); switch (op) { case SLJIT_FAST_RETURN: SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG2) | RM(src))); else FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, src, srcw, TMP_REG1)); return push_inst(compiler, BX | RM(TMP_REG2)); case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN: return SLJIT_SUCCESS; case SLJIT_PREFETCH_L1: case SLJIT_PREFETCH_L2: case SLJIT_PREFETCH_L3: case SLJIT_PREFETCH_ONCE: SLJIT_ASSERT(src & SLJIT_MEM); return emit_op_mem(compiler, PRELOAD | LOAD_DATA, TMP_PC, src, srcw, TMP_REG1); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw) { sljit_s32 size, dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_op_dst(compiler, op, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); switch (op) { case SLJIT_FAST_ENTER: SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(dst)) return push_inst(compiler, MOV | RD(dst) | RM(TMP_REG2)); break; case SLJIT_GET_RETURN_ADDRESS: size = GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds - SLJIT_KEPT_SAVEDS_COUNT(compiler->options), 0); if (compiler->fsaveds > 0 || compiler->fscratches >= SLJIT_FIRST_SAVED_FLOAT_REG) { /* The size of pc is not added above. */ if ((size & SSIZE_OF(sw)) == 0) size += SSIZE_OF(sw); size += GET_SAVED_FLOAT_REGISTERS_SIZE(compiler->fscratches, compiler->fsaveds, f64); } SLJIT_ASSERT(((compiler->local_size + size + SSIZE_OF(sw)) & 0x7) == 0); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, dst_r, SLJIT_MEM1(SLJIT_SP), compiler->local_size + size, TMP_REG1)); break; } if (dst & SLJIT_MEM) return emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(type, reg)); if (type == SLJIT_GP_REGISTER) return reg_map[reg]; if (type == SLJIT_FLOAT_REGISTER || type == SLJIT_SIMD_REG_64) return freg_map[reg]; if (type != SLJIT_SIMD_REG_128) return freg_map[reg] & ~0x1; return -1; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_u32 size) { SLJIT_UNUSED_ARG(size); CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); return push_inst(compiler, *(sljit_ins*)instruction); } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #define FPU_LOAD (1 << 20) #define EMIT_FPU_DATA_TRANSFER(inst, add, base, freg, offs) \ ((inst) | (sljit_ins)((add) << 23) | RN(base) | VD(freg) | (sljit_ins)(offs)) static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { sljit_uw imm; sljit_ins inst = VSTR_F32 | (flags & (SLJIT_32 | FPU_LOAD)); SLJIT_ASSERT(arg & SLJIT_MEM); arg &= ~SLJIT_MEM; if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | (((sljit_ins)argw & 0x3) << 7))); arg = TMP_REG2; argw = 0; } /* Fast loads and stores. */ if (arg) { if (!(argw & ~0x3fc)) return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, arg & REG_MASK, reg, argw >> 2)); if (!(-argw & ~0x3fc)) return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, arg & REG_MASK, reg, (-argw) >> 2)); imm = get_imm((sljit_uw)argw & ~(sljit_uw)0x3fc); if (imm) { FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | imm)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, (argw & 0x3fc) >> 2)); } imm = get_imm((sljit_uw)-argw & ~(sljit_uw)0x3fc); if (imm) { argw = -argw; FAIL_IF(push_inst(compiler, SUB | RD(TMP_REG2) | RN(arg & REG_MASK) | imm)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, TMP_REG2, reg, (argw & 0x3fc) >> 2)); } } if (arg) { FAIL_IF(load_immediate(compiler, TMP_REG2, (sljit_uw)argw)); FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(TMP_REG2))); } else FAIL_IF(load_immediate(compiler, TMP_REG2, (sljit_uw)argw)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, 0)); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { op ^= SLJIT_32; if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, TMP_FREG1, src, srcw)); src = TMP_FREG1; } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_S32_F32, op & SLJIT_32, TMP_FREG1, src, 0))); if (FAST_IS_REG(dst)) return push_inst(compiler, VMOV | (1 << 20) | RD(dst) | VN(TMP_FREG1)); /* Store the integer value from a VFP register. */ return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw); } static sljit_s32 sljit_emit_fop1_conv_f64_from_w(struct sljit_compiler *compiler, sljit_ins ins, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, VMOV | RD(src) | VN(TMP_FREG1))); else if (src & SLJIT_MEM) { /* Load the integer value into a VFP register. */ FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw)); } else { FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)srcw)); FAIL_IF(push_inst(compiler, VMOV | RD(TMP_REG1) | VN(TMP_FREG1))); } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(ins, ins & SLJIT_32, dst_r, TMP_FREG1, 0))); if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (ins & SLJIT_32), TMP_FREG1, dst, dstw); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { return sljit_emit_fop1_conv_f64_from_w(compiler, VCVT_F32_S32 | (~op & SLJIT_32), dst, dstw, src, srcw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { return sljit_emit_fop1_conv_f64_from_w(compiler, VCVT_F32_U32 | (~op & SLJIT_32), dst, dstw, src, srcw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { op ^= SLJIT_32; if (src1 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, TMP_FREG1, src1, src1w)); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, TMP_FREG2, src2, src2w)); src2 = TMP_FREG2; } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCMP_F32, op & SLJIT_32, src1, src2, 0))); FAIL_IF(push_inst(compiler, VMRS)); if (GET_FLAG_TYPE(op) != SLJIT_UNORDERED_OR_EQUAL) return SLJIT_SUCCESS; return push_inst(compiler, (CMP - CONDITIONAL) | (0x60000000 /* VS */) | SET_FLAGS | RN(TMP_REG1) | RM(TMP_REG1)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r; CHECK_ERROR(); SLJIT_COMPILE_ASSERT((SLJIT_32 == 0x100), float_transfer_bit_error); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (GET_OPCODE(op) != SLJIT_CONV_F64_FROM_F32) op ^= SLJIT_32; if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, dst_r, src, srcw)); src = dst_r; } switch (GET_OPCODE(op)) { case SLJIT_MOV_F64: if (src != dst_r) { if (dst_r != TMP_FREG1) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, op & SLJIT_32, dst_r, src, 0))); else dst_r = src; } break; case SLJIT_NEG_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VNEG_F32, op & SLJIT_32, dst_r, src, 0))); break; case SLJIT_ABS_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VABS_F32, op & SLJIT_32, dst_r, src, 0))); break; case SLJIT_CONV_F64_FROM_F32: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_F64_F32, op & SLJIT_32, dst_r, src, 0))); op ^= SLJIT_32; break; } if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_32), dst_r, dst, dstw); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); op ^= SLJIT_32; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src2 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, TMP_FREG2, src2, src2w)); src2 = TMP_FREG2; } if (src1 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32) | FPU_LOAD, TMP_FREG1, src1, src1w)); src1 = TMP_FREG1; } switch (GET_OPCODE(op)) { case SLJIT_ADD_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VADD_F32, op & SLJIT_32, dst_r, src2, src1))); break; case SLJIT_SUB_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VSUB_F32, op & SLJIT_32, dst_r, src2, src1))); break; case SLJIT_MUL_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMUL_F32, op & SLJIT_32, dst_r, src2, src1))); break; case SLJIT_DIV_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VDIV_F32, op & SLJIT_32, dst_r, src2, src1))); break; case SLJIT_COPYSIGN_F64: FAIL_IF(push_inst(compiler, VMOV | (1 << 20) | VN(src2) | RD(TMP_REG1) | ((op & SLJIT_32) ? (1 << 7) : 0))); FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VABS_F32, op & SLJIT_32, dst_r, src1, 0))); FAIL_IF(push_inst(compiler, CMP | SET_FLAGS | RN(TMP_REG1) | SRC2_IMM | 0)); return push_inst(compiler, EMIT_FPU_OPERATION((VNEG_F32 & ~COND_MASK) | 0xb0000000, op & SLJIT_32, dst_r, dst_r, 0)); } if (dst_r == TMP_FREG1) FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_32), TMP_FREG1, dst, dstw)); return SLJIT_SUCCESS; } #undef EMIT_FPU_DATA_TRANSFER SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler, sljit_s32 freg, sljit_f32 value) { #if defined(__ARM_NEON) && __ARM_NEON sljit_u32 exp; sljit_ins ins; #endif /* NEON */ union { sljit_u32 imm; sljit_f32 value; } u; CHECK_ERROR(); CHECK(check_sljit_emit_fset32(compiler, freg, value)); u.value = value; #if defined(__ARM_NEON) && __ARM_NEON if ((u.imm << (32 - 19)) == 0) { exp = (u.imm >> (23 + 2)) & 0x3f; if (exp == 0x20 || exp == 0x1f) { ins = ((u.imm >> 24) & 0x80) | ((u.imm >> 19) & 0x7f); return push_inst(compiler, (VMOV_F32 ^ (1 << 6)) | ((ins & 0xf0) << 12) | VD(freg) | (ins & 0xf)); } } #endif /* NEON */ FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm)); return push_inst(compiler, VMOV | VN(freg) | RD(TMP_REG1)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler, sljit_s32 freg, sljit_f64 value) { #if defined(__ARM_NEON) && __ARM_NEON sljit_u32 exp; sljit_ins ins; #endif /* NEON */ union { sljit_u32 imm[2]; sljit_f64 value; } u; CHECK_ERROR(); CHECK(check_sljit_emit_fset64(compiler, freg, value)); u.value = value; #if defined(__ARM_NEON) && __ARM_NEON if (u.imm[0] == 0 && (u.imm[1] << (64 - 48)) == 0) { exp = (u.imm[1] >> ((52 - 32) + 2)) & 0x1ff; if (exp == 0x100 || exp == 0xff) { ins = ((u.imm[1] >> (56 - 32)) & 0x80) | ((u.imm[1] >> (48 - 32)) & 0x7f); return push_inst(compiler, (VMOV_F32 ^ (1 << 6)) | (1 << 8) | ((ins & 0xf0) << 12) | VD(freg) | (ins & 0xf)); } } #endif /* NEON */ FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm[0])); if (u.imm[0] == u.imm[1]) return push_inst(compiler, VMOV2 | RN(TMP_REG1) | RD(TMP_REG1) | VM(freg)); FAIL_IF(load_immediate(compiler, TMP_REG2, u.imm[1])); return push_inst(compiler, VMOV2 | RN(TMP_REG2) | RD(TMP_REG1) | VM(freg)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 freg, sljit_s32 reg) { sljit_s32 reg2; sljit_ins inst; CHECK_ERROR(); CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg)); if (reg & REG_PAIR_MASK) { reg2 = REG_PAIR_SECOND(reg); reg = REG_PAIR_FIRST(reg); inst = VMOV2 | RN(reg) | RD(reg2) | VM(freg); } else { inst = VMOV | VN(freg) | RD(reg); if (!(op & SLJIT_32)) inst |= 1 << 7; } if (GET_OPCODE(op) == SLJIT_COPY_FROM_F64) inst |= 1 << 20; return push_inst(compiler, inst); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ static sljit_ins get_cc(struct sljit_compiler *compiler, sljit_s32 type) { switch (type) { case SLJIT_EQUAL: case SLJIT_ATOMIC_STORED: case SLJIT_F_EQUAL: case SLJIT_ORDERED_EQUAL: case SLJIT_UNORDERED_OR_EQUAL: return 0x00000000; case SLJIT_NOT_EQUAL: case SLJIT_ATOMIC_NOT_STORED: case SLJIT_F_NOT_EQUAL: case SLJIT_UNORDERED_OR_NOT_EQUAL: case SLJIT_ORDERED_NOT_EQUAL: return 0x10000000; case SLJIT_CARRY: if (compiler->status_flags_state & SLJIT_CURRENT_FLAGS_ADD) return 0x20000000; /* fallthrough */ case SLJIT_LESS: return 0x30000000; case SLJIT_NOT_CARRY: if (compiler->status_flags_state & SLJIT_CURRENT_FLAGS_ADD) return 0x30000000; /* fallthrough */ case SLJIT_GREATER_EQUAL: return 0x20000000; case SLJIT_GREATER: case SLJIT_UNORDERED_OR_GREATER: return 0x80000000; case SLJIT_LESS_EQUAL: case SLJIT_F_LESS_EQUAL: case SLJIT_ORDERED_LESS_EQUAL: return 0x90000000; case SLJIT_SIG_LESS: case SLJIT_UNORDERED_OR_LESS: return 0xb0000000; case SLJIT_SIG_GREATER_EQUAL: case SLJIT_F_GREATER_EQUAL: case SLJIT_ORDERED_GREATER_EQUAL: return 0xa0000000; case SLJIT_SIG_GREATER: case SLJIT_F_GREATER: case SLJIT_ORDERED_GREATER: return 0xc0000000; case SLJIT_SIG_LESS_EQUAL: case SLJIT_UNORDERED_OR_LESS_EQUAL: return 0xd0000000; case SLJIT_OVERFLOW: if (!(compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB))) return 0x10000000; /* fallthrough */ case SLJIT_UNORDERED: return 0x60000000; case SLJIT_NOT_OVERFLOW: if (!(compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB))) return 0x00000000; /* fallthrough */ case SLJIT_ORDERED: return 0x70000000; case SLJIT_F_LESS: case SLJIT_ORDERED_LESS: return 0x40000000; case SLJIT_UNORDERED_OR_GREATER_EQUAL: return 0x50000000; default: SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL_REG_ARG); return 0xe0000000; } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { struct sljit_jump *jump; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; SLJIT_ASSERT(reg_map[TMP_REG1] != 14); #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (type >= SLJIT_FAST_CALL) PTR_FAIL_IF(prepare_blx(compiler)); PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(compiler, type), 0)); if (jump->flags & SLJIT_REWRITABLE_JUMP) { jump->addr = compiler->size; compiler->patches++; } if (type >= SLJIT_FAST_CALL) { jump->flags |= IS_BL; PTR_FAIL_IF(emit_blx(compiler)); } if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) jump->addr = compiler->size; #else /* !SLJIT_CONFIG_ARM_V6 */ if (type >= SLJIT_FAST_CALL) jump->flags |= IS_BL; PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(compiler, type))); jump->addr = compiler->size; #endif /* SLJIT_CONFIG_ARM_V6 */ return jump; } #ifdef __SOFTFP__ static sljit_s32 softfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src, sljit_u32 *extra_space) { sljit_u32 is_tail_call = *extra_space & SLJIT_CALL_RETURN; sljit_u32 offset = 0; sljit_u32 word_arg_offset = 0; sljit_u32 src_offset = 4 * sizeof(sljit_sw); sljit_u32 float_arg_count = 0; sljit_s32 types = 0; sljit_u8 offsets[4]; sljit_u8 *offset_ptr = offsets; if (src && FAST_IS_REG(*src)) src_offset = (sljit_u32)reg_map[*src] * sizeof(sljit_sw); arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { types = (types << SLJIT_ARG_SHIFT) | (arg_types & SLJIT_ARG_MASK); switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (offset & 0x7) offset += sizeof(sljit_sw); *offset_ptr++ = (sljit_u8)offset; offset += sizeof(sljit_f64); float_arg_count++; break; case SLJIT_ARG_TYPE_F32: *offset_ptr++ = (sljit_u8)offset; offset += sizeof(sljit_f32); float_arg_count++; break; default: *offset_ptr++ = (sljit_u8)offset; offset += sizeof(sljit_sw); word_arg_offset += sizeof(sljit_sw); break; } arg_types >>= SLJIT_ARG_SHIFT; } if (offset > 4 * sizeof(sljit_sw) && (!is_tail_call || offset > compiler->args_size)) { /* Keep lr register on the stack. */ if (is_tail_call) offset += sizeof(sljit_sw); offset = ((offset - 4 * sizeof(sljit_sw)) + 0x7) & ~(sljit_u32)0x7; *extra_space = offset; if (is_tail_call) FAIL_IF(emit_stack_frame_release(compiler, (sljit_s32)offset)); else FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | offset)); } else { if (is_tail_call) FAIL_IF(emit_stack_frame_release(compiler, -1)); *extra_space = 0; } /* Process arguments in reversed direction. */ while (types) { switch (types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: float_arg_count--; offset = *(--offset_ptr); SLJIT_ASSERT((offset & 0x7) == 0); if (offset < 4 * sizeof(sljit_sw)) { if (src_offset == offset || src_offset == offset + sizeof(sljit_sw)) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } FAIL_IF(push_inst(compiler, VMOV2 | 0x100000 | (offset << 10) | ((offset + sizeof(sljit_sw)) << 14) | float_arg_count)); } else FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800100 | RN(SLJIT_SP) | (float_arg_count << 12) | ((offset - 4 * sizeof(sljit_sw)) >> 2))); break; case SLJIT_ARG_TYPE_F32: float_arg_count--; offset = *(--offset_ptr); if (offset < 4 * sizeof(sljit_sw)) { if (src_offset == offset) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } FAIL_IF(push_inst(compiler, VMOV | 0x100000 | (float_arg_count << 16) | (offset << 10))); } else FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800000 | RN(SLJIT_SP) | (float_arg_count << 12) | ((offset - 4 * sizeof(sljit_sw)) >> 2))); break; default: word_arg_offset -= sizeof(sljit_sw); offset = *(--offset_ptr); SLJIT_ASSERT(offset >= word_arg_offset); if (offset != word_arg_offset) { if (offset < 4 * sizeof(sljit_sw)) { if (src_offset == offset) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } else if (src_offset == word_arg_offset) { *src = (sljit_s32)(SLJIT_R0 + (offset >> 2)); src_offset = offset; } FAIL_IF(push_inst(compiler, MOV | (offset << 10) | (word_arg_offset >> 2))); } else FAIL_IF(push_inst(compiler, STR | 0x800000 | RN(SLJIT_SP) | (word_arg_offset << 10) | (offset - 4 * sizeof(sljit_sw)))); } break; } types >>= SLJIT_ARG_SHIFT; } return SLJIT_SUCCESS; } static sljit_s32 softfloat_post_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { if ((arg_types & SLJIT_ARG_MASK) == SLJIT_ARG_TYPE_F64) FAIL_IF(push_inst(compiler, VMOV2 | (1 << 16) | (0 << 12) | 0)); if ((arg_types & SLJIT_ARG_MASK) == SLJIT_ARG_TYPE_F32) FAIL_IF(push_inst(compiler, VMOV | (0 << 16) | (0 << 12))); return SLJIT_SUCCESS; } #else /* !__SOFTFP__ */ static sljit_s32 hardfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { sljit_u32 offset = SLJIT_FR0; sljit_u32 new_offset = SLJIT_FR0; sljit_u32 f32_offset = 0; /* Remove return value. */ arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (offset != new_offset) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, SLJIT_32, new_offset, offset, 0))); new_offset++; offset++; break; case SLJIT_ARG_TYPE_F32: if (f32_offset != 0) { FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, 0x400000, f32_offset, offset, 0))); f32_offset = 0; } else { if (offset != new_offset) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, 0, new_offset, offset, 0))); f32_offset = new_offset; new_offset++; } offset++; break; } arg_types >>= SLJIT_ARG_SHIFT; } return SLJIT_SUCCESS; } #endif /* __SOFTFP__ */ SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types) { #ifdef __SOFTFP__ struct sljit_jump *jump; sljit_u32 extra_space = (sljit_u32)type; #endif CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types)); #ifdef __SOFTFP__ if ((type & 0xff) != SLJIT_CALL_REG_ARG) { PTR_FAIL_IF(softfloat_call_with_args(compiler, arg_types, NULL, &extra_space)); SLJIT_ASSERT((extra_space & 0x7) == 0); if ((type & SLJIT_CALL_RETURN) && extra_space == 0) type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP); SLJIT_SKIP_CHECKS(compiler); jump = sljit_emit_jump(compiler, type); PTR_FAIL_IF(jump == NULL); if (extra_space > 0) { if (type & SLJIT_CALL_RETURN) PTR_FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, TMP_REG2, SLJIT_SP, extra_space - sizeof(sljit_sw)))); PTR_FAIL_IF(push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | extra_space)); if (type & SLJIT_CALL_RETURN) { PTR_FAIL_IF(push_inst(compiler, BX | RM(TMP_REG2))); return jump; } } SLJIT_ASSERT(!(type & SLJIT_CALL_RETURN)); PTR_FAIL_IF(softfloat_post_call_with_args(compiler, arg_types)); return jump; } #endif /* __SOFTFP__ */ if (type & SLJIT_CALL_RETURN) { PTR_FAIL_IF(emit_stack_frame_release(compiler, -1)); type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP); } #ifndef __SOFTFP__ if ((type & 0xff) != SLJIT_CALL_REG_ARG) PTR_FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #endif /* !__SOFTFP__ */ SLJIT_SKIP_CHECKS(compiler); return sljit_emit_jump(compiler, type); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { struct sljit_jump *jump; CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); SLJIT_ASSERT(reg_map[TMP_REG1] != 14); if (src != SLJIT_IMM) { if (FAST_IS_REG(src)) { SLJIT_ASSERT(reg_map[src] != 14); return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src)); } SLJIT_ASSERT(src & SLJIT_MEM); FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1)); return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)); } /* These jumps are converted to jump/call instructions when possible. */ jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0)); jump->u.target = (sljit_uw)srcw; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) if (type >= SLJIT_FAST_CALL) FAIL_IF(prepare_blx(compiler)); FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0)); if (type >= SLJIT_FAST_CALL) FAIL_IF(emit_blx(compiler)); #else /* !SLJIT_CONFIG_ARM_V6 */ FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1))); #endif /* SLJIT_CONFIG_ARM_V6 */ jump->addr = compiler->size; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw) { #ifdef __SOFTFP__ sljit_u32 extra_space = (sljit_u32)type; #endif CHECK_ERROR(); CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw)); if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1)); src = TMP_REG1; } if ((type & SLJIT_CALL_RETURN) && (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options)))) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | RM(src))); src = TMP_REG1; } #ifdef __SOFTFP__ if ((type & 0xff) != SLJIT_CALL_REG_ARG) { FAIL_IF(softfloat_call_with_args(compiler, arg_types, &src, &extra_space)); SLJIT_ASSERT((extra_space & 0x7) == 0); if ((type & SLJIT_CALL_RETURN) && extra_space == 0) type = SLJIT_JUMP; SLJIT_SKIP_CHECKS(compiler); FAIL_IF(sljit_emit_ijump(compiler, type, src, srcw)); if (extra_space > 0) { if (type & SLJIT_CALL_RETURN) FAIL_IF(push_inst(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, TMP_REG2, SLJIT_SP, extra_space - sizeof(sljit_sw)))); FAIL_IF(push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | extra_space)); if (type & SLJIT_CALL_RETURN) return push_inst(compiler, BX | RM(TMP_REG2)); } SLJIT_ASSERT(!(type & SLJIT_CALL_RETURN)); return softfloat_post_call_with_args(compiler, arg_types); } #endif /* __SOFTFP__ */ if (type & SLJIT_CALL_RETURN) { FAIL_IF(emit_stack_frame_release(compiler, -1)); type = SLJIT_JUMP; } #ifndef __SOFTFP__ if ((type & 0xff) != SLJIT_CALL_REG_ARG) FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #endif /* !__SOFTFP__ */ SLJIT_SKIP_CHECKS(compiler); return sljit_emit_ijump(compiler, type, src, srcw); } #ifdef __SOFTFP__ static SLJIT_INLINE sljit_s32 emit_fmov_before_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { if (compiler->options & SLJIT_ENTER_REG_ARG) { if (src == SLJIT_FR0) return SLJIT_SUCCESS; SLJIT_SKIP_CHECKS(compiler); return sljit_emit_fop1(compiler, op, SLJIT_RETURN_FREG, 0, src, srcw); } if (FAST_IS_REG(src)) { if (op & SLJIT_32) return push_inst(compiler, VMOV | (1 << 20) | RD(SLJIT_R0) | VN(src)); return push_inst(compiler, VMOV2 | (1 << 20) | RD(SLJIT_R0) | RN(SLJIT_R1) | VM(src)); } SLJIT_SKIP_CHECKS(compiler); if (op & SLJIT_32) return sljit_emit_op1(compiler, SLJIT_MOV, SLJIT_R0, 0, src, srcw); return sljit_emit_mem(compiler, SLJIT_MOV, SLJIT_REG_PAIR(SLJIT_R0, SLJIT_R1), src, srcw); } #endif /* __SOFTFP__ */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 type) { sljit_s32 dst_reg, flags = GET_ALL_FLAGS(op); sljit_ins cc, ins; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); op = GET_OPCODE(op); cc = get_cc(compiler, type); dst_reg = FAST_IS_REG(dst) ? dst : TMP_REG1; if (op < SLJIT_ADD) { FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | SRC2_IMM | 0)); FAIL_IF(push_inst(compiler, ((MOV | RD(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc)); if (dst & SLJIT_MEM) return emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2); return SLJIT_SUCCESS; } ins = (op == SLJIT_AND ? AND : (op == SLJIT_OR ? ORR : EOR)); if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, dst, dstw, TMP_REG2)); FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc)); if (op == SLJIT_AND) FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 0) & ~COND_MASK) | (cc ^ 0x10000000))); if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2)); if (flags & SLJIT_SET_Z) return push_inst(compiler, MOV | SET_FLAGS | RD(TMP_REG2) | RM(dst_reg)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_select(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_reg, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2_reg) { sljit_ins cc, tmp; CHECK_ERROR(); CHECK(check_sljit_emit_select(compiler, type, dst_reg, src1, src1w, src2_reg)); ADJUST_LOCAL_OFFSET(src1, src1w); if (src2_reg != dst_reg && src1 == dst_reg) { src1 = src2_reg; src1w = 0; src2_reg = dst_reg; type ^= 0x1; } if (src1 & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, (src2_reg != dst_reg) ? dst_reg : TMP_REG1, src1, src1w, TMP_REG2)); if (src2_reg != dst_reg) { src1 = src2_reg; src1w = 0; type ^= 0x1; } else { src1 = TMP_REG1; src1w = 0; } } else if (dst_reg != src2_reg) FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | RM(src2_reg))); cc = get_cc(compiler, type & ~SLJIT_32); if (SLJIT_UNLIKELY(src1 == SLJIT_IMM)) { tmp = get_imm((sljit_uw)src1w); if (tmp) return push_inst(compiler, ((MOV | RD(dst_reg) | tmp) & ~COND_MASK) | cc); tmp = get_imm(~(sljit_uw)src1w); if (tmp) return push_inst(compiler, ((MVN | RD(dst_reg) | tmp) & ~COND_MASK) | cc); #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) tmp = (sljit_ins)src1w; FAIL_IF(push_inst(compiler, (MOVW & ~COND_MASK) | cc | RD(dst_reg) | ((tmp << 4) & 0xf0000) | (tmp & 0xfff))); if (tmp <= 0xffff) return SLJIT_SUCCESS; return push_inst(compiler, (MOVT & ~COND_MASK) | cc | RD(dst_reg) | ((tmp >> 12) & 0xf0000) | ((tmp >> 16) & 0xfff)); #else /* !SLJIT_CONFIG_ARM_V7 */ FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)src1w)); src1 = TMP_REG1; #endif /* SLJIT_CONFIG_ARM_V7 */ } return push_inst(compiler, ((MOV | RD(dst_reg) | RM(src1)) & ~COND_MASK) | cc); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_freg, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2_freg) { sljit_ins cc; CHECK_ERROR(); CHECK(check_sljit_emit_fselect(compiler, type, dst_freg, src1, src1w, src2_freg)); ADJUST_LOCAL_OFFSET(src1, src1w); type ^= SLJIT_32; if (dst_freg != src2_freg) { if (dst_freg == src1) { src1 = src2_freg; src1w = 0; type ^= 0x1; } else FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, (type & SLJIT_32), dst_freg, src2_freg, 0))); } if (src1 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (type & SLJIT_32) | FPU_LOAD, TMP_FREG1, src1, src1w)); src1 = TMP_FREG1; } cc = get_cc(compiler, type & ~SLJIT_32); return push_inst(compiler, EMIT_FPU_OPERATION((VMOV_F32 & ~COND_MASK) | cc, (type & SLJIT_32), dst_freg, src1, 0)); } #undef EMIT_FPU_OPERATION static sljit_s32 update_mem_addr(struct sljit_compiler *compiler, sljit_s32 *mem, sljit_sw *memw, sljit_s32 max_offset) { sljit_s32 arg = *mem; sljit_sw argw = *memw; sljit_uw imm, tmp; sljit_sw mask = 0xfff; sljit_sw sign = 0x1000; SLJIT_ASSERT(max_offset >= 0xf00); *mem = TMP_REG1; if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { *memw = 0; return push_inst(compiler, ADD | RD(TMP_REG1) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | ((sljit_ins)(argw & 0x3) << 7)); } arg &= REG_MASK; if (arg) { if (argw <= max_offset && argw >= -mask) { *mem = arg; return SLJIT_SUCCESS; } if (argw >= 0) { tmp = (sljit_uw)(argw & (sign | mask)); tmp = (sljit_uw)((argw + ((tmp <= (sljit_uw)max_offset || tmp == (sljit_uw)sign) ? 0 : sign)) & ~mask); imm = get_imm(tmp); if (imm) { *memw = argw - (sljit_sw)tmp; SLJIT_ASSERT(*memw >= -mask && *memw <= max_offset); return push_inst(compiler, ADD | RD(TMP_REG1) | RN(arg) | imm); } } else { tmp = (sljit_uw)(-argw & (sign | mask)); tmp = (sljit_uw)((-argw + ((tmp <= (sljit_uw)((sign << 1) - max_offset - 1)) ? 0 : sign)) & ~mask); imm = get_imm(tmp); if (imm) { *memw = argw + (sljit_sw)tmp; SLJIT_ASSERT(*memw >= -mask && *memw <= max_offset); return push_inst(compiler, SUB | RD(TMP_REG1) | RN(arg) | imm); } } } tmp = (sljit_uw)(argw & (sign | mask)); tmp = (sljit_uw)((argw + ((tmp <= (sljit_uw)max_offset || tmp == (sljit_uw)sign) ? 0 : sign)) & ~mask); *memw = argw - (sljit_sw)tmp; FAIL_IF(load_immediate(compiler, TMP_REG1, tmp)); if (arg == 0) return SLJIT_SUCCESS; return push_inst(compiler, ADD | RD(TMP_REG1) | RN(TMP_REG1) | RM(arg)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 reg, sljit_s32 mem, sljit_sw memw) { sljit_s32 flags; CHECK_ERROR(); CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw)); if (!(reg & REG_PAIR_MASK)) return sljit_emit_mem_unaligned(compiler, type, reg, mem, memw); ADJUST_LOCAL_OFFSET(mem, memw); FAIL_IF(update_mem_addr(compiler, &mem, &memw, 0xfff - 4)); flags = WORD_SIZE; if (!(type & SLJIT_MEM_STORE)) { if (REG_PAIR_FIRST(reg) == (mem & REG_MASK)) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, REG_PAIR_SECOND(reg), SLJIT_MEM1(mem), memw + SSIZE_OF(sw), TMP_REG1)); return emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, REG_PAIR_FIRST(reg), SLJIT_MEM1(mem), memw, TMP_REG1); } flags = WORD_SIZE | LOAD_DATA; } FAIL_IF(emit_op_mem(compiler, flags, REG_PAIR_FIRST(reg), SLJIT_MEM1(mem), memw, TMP_REG1)); return emit_op_mem(compiler, flags, REG_PAIR_SECOND(reg), SLJIT_MEM1(mem), memw + SSIZE_OF(sw), TMP_REG1); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem_update(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 reg, sljit_s32 mem, sljit_sw memw) { sljit_s32 flags; sljit_ins is_type1_transfer, inst; CHECK_ERROR(); CHECK(check_sljit_emit_mem_update(compiler, type, reg, mem, memw)); is_type1_transfer = 1; switch (type & 0xff) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV32: case SLJIT_MOV_P: flags = WORD_SIZE; break; case SLJIT_MOV_U8: flags = BYTE_SIZE; break; case SLJIT_MOV_S8: if (!(type & SLJIT_MEM_STORE)) is_type1_transfer = 0; flags = BYTE_SIZE | SIGNED; break; case SLJIT_MOV_U16: is_type1_transfer = 0; flags = HALF_SIZE; break; case SLJIT_MOV_S16: is_type1_transfer = 0; flags = HALF_SIZE | SIGNED; break; default: SLJIT_UNREACHABLE(); flags = WORD_SIZE; break; } if (!(type & SLJIT_MEM_STORE)) flags |= LOAD_DATA; SLJIT_ASSERT(is_type1_transfer == !!IS_TYPE1_TRANSFER(flags)); if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) { if (!is_type1_transfer && memw != 0) return SLJIT_ERR_UNSUPPORTED; } else { if (is_type1_transfer) { if (memw > 4095 || memw < -4095) return SLJIT_ERR_UNSUPPORTED; } else if (memw > 255 || memw < -255) return SLJIT_ERR_UNSUPPORTED; } if (type & SLJIT_MEM_SUPP) return SLJIT_SUCCESS; if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) { memw &= 0x3; inst = EMIT_DATA_TRANSFER(flags, 1, reg, mem & REG_MASK, RM(OFFS_REG(mem)) | ((sljit_ins)memw << 7)); if (is_type1_transfer) inst |= (1 << 25); if (type & SLJIT_MEM_POST) inst ^= (1 << 24); else inst |= (1 << 21); return push_inst(compiler, inst); } inst = EMIT_DATA_TRANSFER(flags, 0, reg, mem & REG_MASK, 0); if (type & SLJIT_MEM_POST) inst ^= (1 << 24); else inst |= (1 << 21); if (is_type1_transfer) { if (memw >= 0) inst |= (1 << 23); else memw = -memw; return push_inst(compiler, inst | (sljit_ins)memw); } if (memw >= 0) inst |= (1 << 23); else memw = -memw; return push_inst(compiler, inst | TYPE2_TRANSFER_IMM((sljit_ins)memw)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fmem(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 mem, sljit_sw memw) { CHECK_ERROR(); CHECK(check_sljit_emit_fmem(compiler, type, freg, mem, memw)); if (type & SLJIT_MEM_ALIGNED_32) return emit_fop_mem(compiler, ((type ^ SLJIT_32) & SLJIT_32) | ((type & SLJIT_MEM_STORE) ? 0 : FPU_LOAD), freg, mem, memw); if (type & SLJIT_MEM_STORE) { FAIL_IF(push_inst(compiler, VMOV | (1 << 20) | VN(freg) | RD(TMP_REG2))); if (type & SLJIT_32) return emit_op_mem(compiler, WORD_SIZE, TMP_REG2, mem, memw, TMP_REG1); FAIL_IF(update_mem_addr(compiler, &mem, &memw, 0xfff - 4)); mem |= SLJIT_MEM; FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, mem, memw, TMP_REG1)); FAIL_IF(push_inst(compiler, VMOV | (1 << 20) | VN(freg) | 0x80 | RD(TMP_REG2))); return emit_op_mem(compiler, WORD_SIZE, TMP_REG2, mem, memw + 4, TMP_REG1); } if (type & SLJIT_32) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, mem, memw, TMP_REG1)); return push_inst(compiler, VMOV | VN(freg) | RD(TMP_REG2)); } FAIL_IF(update_mem_addr(compiler, &mem, &memw, 0xfff - 4)); mem |= SLJIT_MEM; FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, mem, memw, TMP_REG1)); FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, mem, memw + 4, TMP_REG1)); return push_inst(compiler, VMOV2 | VM(freg) | RD(TMP_REG2) | RN(TMP_REG1)); } static sljit_s32 sljit_emit_simd_mem_offset(struct sljit_compiler *compiler, sljit_s32 *mem_ptr, sljit_sw memw) { sljit_s32 mem = *mem_ptr; sljit_uw imm; if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) { *mem_ptr = TMP_REG1; return push_inst(compiler, ADD | RD(TMP_REG1) | RN(mem & REG_MASK) | RM(OFFS_REG(mem)) | ((sljit_ins)(memw & 0x3) << 7)); } if (SLJIT_UNLIKELY(!(mem & REG_MASK))) { *mem_ptr = TMP_REG1; return load_immediate(compiler, TMP_REG1, (sljit_uw)memw); } mem &= REG_MASK; if (memw == 0) { *mem_ptr = mem; return SLJIT_SUCCESS; } *mem_ptr = TMP_REG1; imm = get_imm((sljit_uw)(memw < 0 ? -memw : memw)); if (imm != 0) return push_inst(compiler, ((memw < 0) ? SUB : ADD) | RD(TMP_REG1) | RN(mem) | imm); FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)memw)); return push_inst(compiler, ADD | RD(TMP_REG1) | RN(TMP_REG1) | RM(mem)); } static SLJIT_INLINE sljit_s32 simd_get_quad_reg_index(sljit_s32 freg) { freg += freg & 0x1; SLJIT_ASSERT((freg_map[freg] & 0x1) == (freg <= SLJIT_NUMBER_OF_SCRATCH_FLOAT_REGISTERS)); if (freg <= SLJIT_NUMBER_OF_SCRATCH_FLOAT_REGISTERS) freg--; return freg; } #define SLJIT_QUAD_OTHER_HALF(freg) ((((freg) & 0x1) << 1) - 1) SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 srcdst, sljit_sw srcdstw) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_s32 alignment = SLJIT_SIMD_GET_ELEM2_SIZE(type); sljit_ins ins; CHECK_ERROR(); CHECK(check_sljit_emit_simd_mov(compiler, type, freg, srcdst, srcdstw)); ADJUST_LOCAL_OFFSET(srcdst, srcdstw); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) freg = simd_get_quad_reg_index(freg); if (!(srcdst & SLJIT_MEM)) { if (reg_size == 4) srcdst = simd_get_quad_reg_index(srcdst); if (type & SLJIT_SIMD_STORE) ins = VD(srcdst) | VN(freg) | VM(freg); else ins = VD(freg) | VN(srcdst) | VM(srcdst); if (reg_size == 4) ins |= (sljit_ins)1 << 6; return push_inst(compiler, VORR | ins); } FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw)); if (elem_size > 3) elem_size = 3; ins = ((type & SLJIT_SIMD_STORE) ? VST1 : VLD1) | VD(freg) | (sljit_ins)((reg_size == 3) ? (0x7 << 8) : (0xa << 8)); SLJIT_ASSERT(reg_size >= alignment); if (alignment == 3) ins |= 0x10; else if (alignment >= 3) ins |= 0x20; return push_inst(compiler, ins | RN(srcdst) | ((sljit_ins)elem_size) << 6 | 0xf); } static sljit_ins simd_get_imm(sljit_s32 elem_size, sljit_uw value) { sljit_ins result; if (elem_size > 1 && (sljit_u16)value == (value >> 16)) { elem_size = 1; value = (sljit_u16)value; } if (elem_size == 1 && (sljit_u8)value == (value >> 8)) { elem_size = 0; value = (sljit_u8)value; } switch (elem_size) { case 0: SLJIT_ASSERT(value <= 0xff); result = 0xe00; break; case 1: SLJIT_ASSERT(value <= 0xffff); result = 0; while (1) { if (value <= 0xff) { result |= 0x800; break; } if ((value & 0xff) == 0) { value >>= 8; result |= 0xa00; break; } if (result != 0) return ~(sljit_ins)0; value ^= (sljit_uw)0xffff; result = (1 << 5); } break; default: SLJIT_ASSERT(value <= 0xffffffff); result = 0; while (1) { if (value <= 0xff) { result |= 0x000; break; } if ((value & ~(sljit_uw)0xff00) == 0) { value >>= 8; result |= 0x200; break; } if ((value & ~(sljit_uw)0xff0000) == 0) { value >>= 16; result |= 0x400; break; } if ((value & ~(sljit_uw)0xff000000) == 0) { value >>= 24; result |= 0x600; break; } if ((value & (sljit_uw)0xff) == 0xff && (value >> 16) == 0) { value >>= 8; result |= 0xc00; break; } if ((value & (sljit_uw)0xffff) == 0xffff && (value >> 24) == 0) { value >>= 16; result |= 0xd00; break; } if (result != 0) return ~(sljit_ins)0; value = ~value; result = (1 << 5); } break; } return ((sljit_ins)value & 0xf) | (((sljit_ins)value & 0x70) << 12) | (((sljit_ins)value & 0x80) << 17) | result; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 src, sljit_sw srcw) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_ins ins, imm; CHECK_ERROR(); CHECK(check_sljit_emit_simd_replicate(compiler, type, freg, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) ? (elem_size < 2 || elem_size > 3) : (elem_size > 2)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) freg = simd_get_quad_reg_index(freg); if (src == SLJIT_IMM && srcw == 0) return push_inst(compiler, VMOV_i | ((reg_size == 4) ? (1 << 6) : 0) | VD(freg)); if (SLJIT_UNLIKELY(elem_size == 3)) { SLJIT_ASSERT(type & SLJIT_SIMD_FLOAT); if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, FPU_LOAD | SLJIT_32, freg, src, srcw)); src = freg; } else if (freg != src) FAIL_IF(push_inst(compiler, VORR | VD(freg) | VN(src) | VM(src))); freg += SLJIT_QUAD_OTHER_HALF(freg); if (freg != src) return push_inst(compiler, VORR | VD(freg) | VN(src) | VM(src)); return SLJIT_SUCCESS; } if (src & SLJIT_MEM) { FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw)); ins = (sljit_ins)(elem_size << 6); if (reg_size == 4) ins |= (sljit_ins)1 << 5; return push_inst(compiler, VLD1_r | ins | VD(freg) | RN(src) | 0xf); } if (type & SLJIT_SIMD_FLOAT) { SLJIT_ASSERT(elem_size == 2); ins = ((sljit_ins)freg_ebit_map[src] << (16 + 2 + 1)) | ((sljit_ins)1 << (16 + 2)); if (reg_size == 4) ins |= (sljit_ins)1 << 6; return push_inst(compiler, VDUP_s | ins | VD(freg) | (sljit_ins)freg_map[src]); } if (src == SLJIT_IMM) { if (elem_size < 2) srcw &= ((sljit_sw)1 << (((sljit_sw)1 << elem_size) << 3)) - 1; imm = simd_get_imm(elem_size, (sljit_uw)srcw); if (imm != ~(sljit_ins)0) { if (reg_size == 4) imm |= (sljit_ins)1 << 6; return push_inst(compiler, VMOV_i | imm | VD(freg)); } FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)srcw)); src = TMP_REG1; } switch (elem_size) { case 0: ins = 1 << 22; break; case 1: ins = 1 << 5; break; default: ins = 0; break; } if (reg_size == 4) ins |= (sljit_ins)1 << 21; return push_inst(compiler, VDUP | ins | VN(freg) | RD(src)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 lane_index, sljit_s32 srcdst, sljit_sw srcdstw) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_ins ins; CHECK_ERROR(); CHECK(check_sljit_emit_simd_lane_mov(compiler, type, freg, lane_index, srcdst, srcdstw)); ADJUST_LOCAL_OFFSET(srcdst, srcdstw); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) ? (elem_size < 2 || elem_size > 3) : (elem_size > 2)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) freg = simd_get_quad_reg_index(freg); if (type & SLJIT_SIMD_LANE_ZERO) { ins = (reg_size == 3) ? 0 : ((sljit_ins)1 << 6); if (type & SLJIT_SIMD_FLOAT) { if (elem_size == 3 && !(srcdst & SLJIT_MEM)) { if (lane_index == 1) freg += SLJIT_QUAD_OTHER_HALF(freg); if (srcdst != freg) FAIL_IF(push_inst(compiler, VORR | VD(freg) | VN(srcdst) | VM(srcdst))); freg += SLJIT_QUAD_OTHER_HALF(freg); return push_inst(compiler, VMOV_i | VD(freg)); } if (srcdst == freg || (elem_size == 3 && srcdst == (freg + SLJIT_QUAD_OTHER_HALF(freg)))) { FAIL_IF(push_inst(compiler, VORR | ins | VD(TMP_FREG2) | VN(freg) | VM(freg))); srcdst = TMP_FREG2; srcdstw = 0; } } FAIL_IF(push_inst(compiler, VMOV_i | ins | VD(freg))); } if (reg_size == 4 && lane_index >= (0x8 >> elem_size)) { lane_index -= (0x8 >> elem_size); freg += SLJIT_QUAD_OTHER_HALF(freg); } if (srcdst & SLJIT_MEM) { if (elem_size == 3) return emit_fop_mem(compiler, ((type & SLJIT_SIMD_STORE) ? 0 : FPU_LOAD) | SLJIT_32, freg, srcdst, srcdstw); FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw)); lane_index = lane_index << elem_size; ins = (sljit_ins)((elem_size << 10) | (lane_index << 5)); return push_inst(compiler, ((type & SLJIT_SIMD_STORE) ? VST1_s : VLD1_s) | ins | VD(freg) | RN(srcdst) | 0xf); } if (type & SLJIT_SIMD_FLOAT) { if (elem_size == 3) { if (type & SLJIT_SIMD_STORE) return push_inst(compiler, VORR | VD(srcdst) | VN(freg) | VM(freg)); return push_inst(compiler, VMOV_F32 | SLJIT_32 | VD(freg) | VM(srcdst)); } if (type & SLJIT_SIMD_STORE) { if (freg_ebit_map[freg] == 0) { if (lane_index == 1) freg = SLJIT_F64_SECOND(freg); return push_inst(compiler, VMOV_F32 | VD(srcdst) | VM(freg)); } FAIL_IF(push_inst(compiler, VMOV_s | (1 << 20) | ((sljit_ins)lane_index << 21) | VN(freg) | RD(TMP_REG1))); return push_inst(compiler, VMOV | VN(srcdst) | RD(TMP_REG1)); } FAIL_IF(push_inst(compiler, VMOV | (1 << 20) | VN(srcdst) | RD(TMP_REG1))); return push_inst(compiler, VMOV_s | ((sljit_ins)lane_index << 21) | VN(freg) | RD(TMP_REG1)); } if (srcdst == SLJIT_IMM) { if (elem_size < 2) srcdstw &= ((sljit_sw)1 << (((sljit_sw)1 << elem_size) << 3)) - 1; FAIL_IF(load_immediate(compiler, TMP_REG1, (sljit_uw)srcdstw)); srcdst = TMP_REG1; } if (elem_size == 0) ins = 0x400000; else if (elem_size == 1) ins = 0x20; else ins = 0; lane_index = lane_index << elem_size; ins |= (sljit_ins)(((lane_index & 0x4) << 19) | ((lane_index & 0x3) << 5)); if (type & SLJIT_SIMD_STORE) { ins |= (1 << 20); if (elem_size < 2 && !(type & SLJIT_SIMD_LANE_SIGNED)) ins |= (1 << 23); } return push_inst(compiler, VMOV_s | ins | VN(freg) | RD(srcdst)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 src, sljit_s32 src_lane_index) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_ins ins; CHECK_ERROR(); CHECK(check_sljit_emit_simd_lane_replicate(compiler, type, freg, src, src_lane_index)); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) { freg = simd_get_quad_reg_index(freg); src = simd_get_quad_reg_index(src); if (src_lane_index >= (0x8 >> elem_size)) { src_lane_index -= (0x8 >> elem_size); src += SLJIT_QUAD_OTHER_HALF(src); } } if (elem_size == 3) { if (freg != src) FAIL_IF(push_inst(compiler, VORR | VD(freg) | VN(src) | VM(src))); freg += SLJIT_QUAD_OTHER_HALF(freg); if (freg != src) return push_inst(compiler, VORR | VD(freg) | VN(src) | VM(src)); return SLJIT_SUCCESS; } ins = ((((sljit_ins)src_lane_index << 1) | 1) << (16 + elem_size)); if (reg_size == 4) ins |= (sljit_ins)1 << 6; return push_inst(compiler, VDUP_s | ins | VD(freg) | VM(src)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 src, sljit_sw srcw) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_s32 elem2_size = SLJIT_SIMD_GET_ELEM2_SIZE(type); sljit_s32 dst_reg; CHECK_ERROR(); CHECK(check_sljit_emit_simd_extend(compiler, type, freg, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) && (elem_size != 2 || elem2_size != 3)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) freg = simd_get_quad_reg_index(freg); if (src & SLJIT_MEM) { FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw)); if (reg_size == 4 && elem2_size - elem_size == 1) FAIL_IF(push_inst(compiler, VLD1 | (0x7 << 8) | VD(freg) | RN(src) | 0xf)); else FAIL_IF(push_inst(compiler, VLD1_s | (sljit_ins)((reg_size - elem2_size + elem_size) << 10) | VD(freg) | RN(src) | 0xf)); src = freg; } else if (reg_size == 4) src = simd_get_quad_reg_index(src); if (!(type & SLJIT_SIMD_FLOAT)) { dst_reg = (reg_size == 4) ? freg : TMP_FREG2; do { FAIL_IF(push_inst(compiler, VSHLL | ((type & SLJIT_SIMD_EXTEND_SIGNED) ? 0 : (1 << 24)) | ((sljit_ins)1 << (19 + elem_size)) | VD(dst_reg) | VM(src))); src = dst_reg; } while (++elem_size < elem2_size); if (dst_reg == TMP_FREG2) return push_inst(compiler, VORR | VD(freg) | VN(TMP_FREG2) | VM(TMP_FREG2)); return SLJIT_SUCCESS; } /* No SIMD variant, must use VFP instead. */ SLJIT_ASSERT(reg_size == 4); if (freg == src) { freg += SLJIT_QUAD_OTHER_HALF(freg); FAIL_IF(push_inst(compiler, VCVT_F64_F32 | VD(freg) | VM(src) | 0x20)); freg += SLJIT_QUAD_OTHER_HALF(freg); return push_inst(compiler, VCVT_F64_F32 | VD(freg) | VM(src)); } FAIL_IF(push_inst(compiler, VCVT_F64_F32 | VD(freg) | VM(src))); freg += SLJIT_QUAD_OTHER_HALF(freg); return push_inst(compiler, VCVT_F64_F32 | VD(freg) | VM(src) | 0x20); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 freg, sljit_s32 dst, sljit_sw dstw) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_ins ins, imms; sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_simd_sign(compiler, type, freg, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3)) return SLJIT_ERR_UNSUPPORTED; if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; switch (elem_size) { case 0: imms = 0x243219; ins = VSHR | (1 << 24) | (0x9 << 16); break; case 1: imms = (reg_size == 4) ? 0x243219 : 0x2231; ins = VSHR | (1 << 24) | (0x11 << 16); break; case 2: imms = (reg_size == 4) ? 0x2231 : 0x21; ins = VSHR | (1 << 24) | (0x21 << 16); break; default: imms = 0x21; ins = VSHR | (1 << 24) | (0x1 << 16) | (1 << 7); break; } if (reg_size == 4) { freg = simd_get_quad_reg_index(freg); ins |= (sljit_ins)1 << 6; } SLJIT_ASSERT((freg_map[TMP_FREG2] & 0x1) == 0); FAIL_IF(push_inst(compiler, ins | VD(TMP_FREG2) | VM(freg))); if (reg_size == 4 && elem_size > 0) FAIL_IF(push_inst(compiler, VMOVN | ((sljit_ins)(elem_size - 1) << 18) | VD(TMP_FREG2) | VM(TMP_FREG2))); ins = (reg_size == 4 && elem_size == 0) ? (1 << 6) : 0; while (imms >= 0x100) { FAIL_IF(push_inst(compiler, VSRA | (1 << 24) | ins | ((imms & 0xff) << 16) | VD(TMP_FREG2) | VM(TMP_FREG2))); imms >>= 8; } FAIL_IF(push_inst(compiler, VSRA | (1 << 24) | ins | (1 << 7) | (imms << 16) | VD(TMP_FREG2) | VM(TMP_FREG2))); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; FAIL_IF(push_inst(compiler, VMOV_s | (1 << 20) | (1 << 23) | (0x2 << 21) | RD(dst_r) | VN(TMP_FREG2))); if (reg_size == 4 && elem_size == 0) { SLJIT_ASSERT(freg_map[TMP_FREG2] + 1 == freg_map[TMP_FREG1]); FAIL_IF(push_inst(compiler, VMOV_s | (1 << 20) | (1 << 23) | (0x2 << 21) | RD(TMP_REG2) | VN(TMP_FREG1))); FAIL_IF(push_inst(compiler, ORR | RD(dst_r) | RN(dst_r) | RM(TMP_REG2) | (0x8 << 7))); } if (dst_r == TMP_REG1) return emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_freg, sljit_s32 src1_freg, sljit_s32 src2_freg) { sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type); sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type); sljit_ins ins = 0; CHECK_ERROR(); CHECK(check_sljit_emit_simd_op2(compiler, type, dst_freg, src1_freg, src2_freg)); if (reg_size != 3 && reg_size != 4) return SLJIT_ERR_UNSUPPORTED; if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3)) return SLJIT_ERR_UNSUPPORTED; switch (SLJIT_SIMD_GET_OPCODE(type)) { case SLJIT_SIMD_OP2_AND: ins = VAND; break; case SLJIT_SIMD_OP2_OR: ins = VORR; break; case SLJIT_SIMD_OP2_XOR: ins = VEOR; break; } if (type & SLJIT_SIMD_TEST) return SLJIT_SUCCESS; if (reg_size == 4) { dst_freg = simd_get_quad_reg_index(dst_freg); src1_freg = simd_get_quad_reg_index(src1_freg); src2_freg = simd_get_quad_reg_index(src2_freg); ins |= (sljit_ins)1 << 6; } return push_inst(compiler, ins | VD(dst_freg) | VN(src1_freg) | VM(src2_freg)); } #undef FPU_LOAD SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst_reg, sljit_s32 mem_reg) { sljit_u32 ins; CHECK_ERROR(); CHECK(check_sljit_emit_atomic_load(compiler, op, dst_reg, mem_reg)); switch (GET_OPCODE(op)) { case SLJIT_MOV_U8: ins = LDREXB; break; case SLJIT_MOV_U16: ins = LDREXH; break; default: ins = LDREX; break; } return push_inst(compiler, ins | RN(mem_reg) | RD(dst_reg)); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src_reg, sljit_s32 mem_reg, sljit_s32 temp_reg) { sljit_u32 ins; /* temp_reg == mem_reg is undefined so use another temp register */ SLJIT_UNUSED_ARG(temp_reg); CHECK_ERROR(); CHECK(check_sljit_emit_atomic_store(compiler, op, src_reg, mem_reg, temp_reg)); switch (GET_OPCODE(op)) { case SLJIT_MOV_U8: ins = STREXB; break; case SLJIT_MOV_U16: ins = STREXH; break; default: ins = STREX; break; } FAIL_IF(push_inst(compiler, ins | RN(mem_reg) | RD(TMP_REG1) | RM(src_reg))); if (op & SLJIT_SET_ATOMIC_STORED) return push_inst(compiler, CMP | SET_FLAGS | SRC2_IMM | RN(TMP_REG1)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, dst_r, TMP_PC, 0), (sljit_ins)init_value)); compiler->patches++; #else /* !SLJIT_CONFIG_ARM_V6 */ PTR_FAIL_IF(emit_imm(compiler, dst_r, init_value)); #endif /* SLJIT_CONFIG_ARM_V6 */ const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1)); return const_; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { struct sljit_put_label *put_label; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2; #if (defined SLJIT_CONFIG_ARM_V6 && SLJIT_CONFIG_ARM_V6) PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, dst_r, TMP_PC, 0), 0)); compiler->patches++; #else /* !SLJIT_CONFIG_ARM_V6 */ PTR_FAIL_IF(emit_imm(compiler, dst_r, 0)); #endif /* SLJIT_CONFIG_ARM_V6 */ put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label)); PTR_FAIL_IF(!put_label); set_put_label(put_label, compiler, 0); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1)); return put_label; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { inline_set_jump_addr(addr, executable_offset, new_target, 1); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { inline_set_const(addr, executable_offset, (sljit_uw)new_constant, 1); }