/* * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include "../ssl_local.h" #include "statem_local.h" #include "internal/cryptlib.h" #include #include #include #include #include #include #include /* * Map error codes to TLS/SSL alart types. */ typedef struct x509err2alert_st { int x509err; int alert; } X509ERR2ALERT; /* Fixed value used in the ServerHello random field to identify an HRR */ const unsigned char hrrrandom[] = { 0xcf, 0x21, 0xad, 0x74, 0xe5, 0x9a, 0x61, 0x11, 0xbe, 0x1d, 0x8c, 0x02, 0x1e, 0x65, 0xb8, 0x91, 0xc2, 0xa2, 0x11, 0x16, 0x7a, 0xbb, 0x8c, 0x5e, 0x07, 0x9e, 0x09, 0xe2, 0xc8, 0xa8, 0x33, 0x9c }; int ossl_statem_set_mutator(SSL *s, ossl_statem_mutate_handshake_cb mutate_handshake_cb, ossl_statem_finish_mutate_handshake_cb finish_mutate_handshake_cb, void *mutatearg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sc->statem.mutate_handshake_cb = mutate_handshake_cb; sc->statem.mutatearg = mutatearg; sc->statem.finish_mutate_handshake_cb = finish_mutate_handshake_cb; return 1; } /* * send s->init_buf in records of type 'type' (SSL3_RT_HANDSHAKE or * SSL3_RT_CHANGE_CIPHER_SPEC) */ int ssl3_do_write(SSL_CONNECTION *s, uint8_t type) { int ret; size_t written = 0; SSL *ssl = SSL_CONNECTION_GET_SSL(s); /* * If we're running the test suite then we may need to mutate the message * we've been asked to write. Does not happen in normal operation. */ if (s->statem.mutate_handshake_cb != NULL && !s->statem.write_in_progress && type == SSL3_RT_HANDSHAKE && s->init_num >= SSL3_HM_HEADER_LENGTH) { unsigned char *msg; size_t msglen; if (!s->statem.mutate_handshake_cb((unsigned char *)s->init_buf->data, s->init_num, &msg, &msglen, s->statem.mutatearg)) return -1; if (msglen < SSL3_HM_HEADER_LENGTH || !BUF_MEM_grow(s->init_buf, msglen)) return -1; memcpy(s->init_buf->data, msg, msglen); s->init_num = msglen; s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH; s->statem.finish_mutate_handshake_cb(s->statem.mutatearg); s->statem.write_in_progress = 1; } ret = ssl3_write_bytes(ssl, type, &s->init_buf->data[s->init_off], s->init_num, &written); if (ret <= 0) return -1; if (type == SSL3_RT_HANDSHAKE) /* * should not be done for 'Hello Request's, but in that case we'll * ignore the result anyway * TLS1.3 KeyUpdate and NewSessionTicket do not need to be added */ if (!SSL_CONNECTION_IS_TLS13(s) || (s->statem.hand_state != TLS_ST_SW_SESSION_TICKET && s->statem.hand_state != TLS_ST_CW_KEY_UPDATE && s->statem.hand_state != TLS_ST_SW_KEY_UPDATE)) if (!ssl3_finish_mac(s, (unsigned char *)&s->init_buf->data[s->init_off], written)) return -1; if (written == s->init_num) { s->statem.write_in_progress = 0; if (s->msg_callback) s->msg_callback(1, s->version, type, s->init_buf->data, (size_t)(s->init_off + s->init_num), ssl, s->msg_callback_arg); return 1; } s->init_off += written; s->init_num -= written; return 0; } int tls_close_construct_packet(SSL_CONNECTION *s, WPACKET *pkt, int htype) { size_t msglen; if ((htype != SSL3_MT_CHANGE_CIPHER_SPEC && !WPACKET_close(pkt)) || !WPACKET_get_length(pkt, &msglen) || msglen > INT_MAX) return 0; s->init_num = (int)msglen; s->init_off = 0; return 1; } int tls_setup_handshake(SSL_CONNECTION *s) { int ver_min, ver_max, ok; SSL *ssl = SSL_CONNECTION_GET_SSL(s); SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (!ssl3_init_finished_mac(s)) { /* SSLfatal() already called */ return 0; } /* Reset any extension flags */ memset(s->ext.extflags, 0, sizeof(s->ext.extflags)); if (ssl_get_min_max_version(s, &ver_min, &ver_max, NULL) != 0) { SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_NO_PROTOCOLS_AVAILABLE); return 0; } /* Sanity check that we have MD5-SHA1 if we need it */ if (sctx->ssl_digest_methods[SSL_MD_MD5_SHA1_IDX] == NULL) { int negotiated_minversion; int md5sha1_needed_maxversion = SSL_CONNECTION_IS_DTLS(s) ? DTLS1_VERSION : TLS1_1_VERSION; /* We don't have MD5-SHA1 - do we need it? */ if (ssl_version_cmp(s, ver_max, md5sha1_needed_maxversion) <= 0) { SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_SUITABLE_DIGEST_ALGORITHM, "The max supported SSL/TLS version needs the" " MD5-SHA1 digest but it is not available" " in the loaded providers. Use (D)TLSv1.2 or" " above, or load different providers"); return 0; } ok = 1; /* Don't allow TLSv1.1 or below to be negotiated */ negotiated_minversion = SSL_CONNECTION_IS_DTLS(s) ? DTLS1_2_VERSION : TLS1_2_VERSION; if (ssl_version_cmp(s, ver_min, negotiated_minversion) < 0) ok = SSL_set_min_proto_version(ssl, negotiated_minversion); if (!ok) { /* Shouldn't happen */ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, ERR_R_INTERNAL_ERROR); return 0; } } ok = 0; if (s->server) { STACK_OF(SSL_CIPHER) *ciphers = SSL_get_ciphers(ssl); int i; /* * Sanity check that the maximum version we accept has ciphers * enabled. For clients we do this check during construction of the * ClientHello. */ for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); int cipher_minprotover = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls; int cipher_maxprotover = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls; if (ssl_version_cmp(s, ver_max, cipher_minprotover) >= 0 && ssl_version_cmp(s, ver_max, cipher_maxprotover) <= 0) { ok = 1; break; } } if (!ok) { SSLfatal_data(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_CIPHERS_AVAILABLE, "No ciphers enabled for max supported " "SSL/TLS version"); return 0; } if (SSL_IS_FIRST_HANDSHAKE(s)) { /* N.B. s->session_ctx == s->ctx here */ ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_accept); } else { /* N.B. s->ctx may not equal s->session_ctx */ ssl_tsan_counter(sctx, &sctx->stats.sess_accept_renegotiate); s->s3.tmp.cert_request = 0; } } else { if (SSL_IS_FIRST_HANDSHAKE(s)) ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_connect); else ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_connect_renegotiate); /* mark client_random uninitialized */ memset(s->s3.client_random, 0, sizeof(s->s3.client_random)); s->hit = 0; s->s3.tmp.cert_req = 0; if (SSL_CONNECTION_IS_DTLS(s)) s->statem.use_timer = 1; } return 1; } /* * Size of the to-be-signed TLS13 data, without the hash size itself: * 64 bytes of value 32, 33 context bytes, 1 byte separator */ #define TLS13_TBS_START_SIZE 64 #define TLS13_TBS_PREAMBLE_SIZE (TLS13_TBS_START_SIZE + 33 + 1) static int get_cert_verify_tbs_data(SSL_CONNECTION *s, unsigned char *tls13tbs, void **hdata, size_t *hdatalen) { /* ASCII: "TLS 1.3, server CertificateVerify", in hex for EBCDIC compatibility */ static const char servercontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x73\x65\x72" "\x76\x65\x72\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79"; /* ASCII: "TLS 1.3, client CertificateVerify", in hex for EBCDIC compatibility */ static const char clientcontext[] = "\x54\x4c\x53\x20\x31\x2e\x33\x2c\x20\x63\x6c\x69" "\x65\x6e\x74\x20\x43\x65\x72\x74\x69\x66\x69\x63\x61\x74\x65\x56\x65\x72\x69\x66\x79"; if (SSL_CONNECTION_IS_TLS13(s)) { size_t hashlen; /* Set the first 64 bytes of to-be-signed data to octet 32 */ memset(tls13tbs, 32, TLS13_TBS_START_SIZE); /* This copies the 33 bytes of context plus the 0 separator byte */ if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY || s->statem.hand_state == TLS_ST_SW_CERT_VRFY) strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, servercontext); else strcpy((char *)tls13tbs + TLS13_TBS_START_SIZE, clientcontext); /* * If we're currently reading then we need to use the saved handshake * hash value. We can't use the current handshake hash state because * that includes the CertVerify itself. */ if (s->statem.hand_state == TLS_ST_CR_CERT_VRFY || s->statem.hand_state == TLS_ST_SR_CERT_VRFY) { memcpy(tls13tbs + TLS13_TBS_PREAMBLE_SIZE, s->cert_verify_hash, s->cert_verify_hash_len); hashlen = s->cert_verify_hash_len; } else if (!ssl_handshake_hash(s, tls13tbs + TLS13_TBS_PREAMBLE_SIZE, EVP_MAX_MD_SIZE, &hashlen)) { /* SSLfatal() already called */ return 0; } *hdata = tls13tbs; *hdatalen = TLS13_TBS_PREAMBLE_SIZE + hashlen; } else { size_t retlen; long retlen_l; retlen = retlen_l = BIO_get_mem_data(s->s3.handshake_buffer, hdata); if (retlen_l <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } *hdatalen = retlen; } return 1; } CON_FUNC_RETURN tls_construct_cert_verify(SSL_CONNECTION *s, WPACKET *pkt) { EVP_PKEY *pkey = NULL; const EVP_MD *md = NULL; EVP_MD_CTX *mctx = NULL; EVP_PKEY_CTX *pctx = NULL; size_t hdatalen = 0, siglen = 0; void *hdata; unsigned char *sig = NULL; unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE]; const SIGALG_LOOKUP *lu = s->s3.tmp.sigalg; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (lu == NULL || s->s3.tmp.cert == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } pkey = s->s3.tmp.cert->privatekey; if (pkey == NULL || !tls1_lookup_md(sctx, lu, &md)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } mctx = EVP_MD_CTX_new(); if (mctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } /* Get the data to be signed */ if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) { /* SSLfatal() already called */ goto err; } if (SSL_USE_SIGALGS(s) && !WPACKET_put_bytes_u16(pkt, lu->sigalg)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (EVP_DigestSignInit_ex(mctx, &pctx, md == NULL ? NULL : EVP_MD_get0_name(md), sctx->libctx, sctx->propq, pkey, NULL) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } if (lu->sig == EVP_PKEY_RSA_PSS) { if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0 || EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, RSA_PSS_SALTLEN_DIGEST) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } } if (s->version == SSL3_VERSION) { /* * Here we use EVP_DigestSignUpdate followed by EVP_DigestSignFinal * in order to add the EVP_CTRL_SSL3_MASTER_SECRET call between them. */ if (EVP_DigestSignUpdate(mctx, hdata, hdatalen) <= 0 || EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET, (int)s->session->master_key_length, s->session->master_key) <= 0 || EVP_DigestSignFinal(mctx, NULL, &siglen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } sig = OPENSSL_malloc(siglen); if (sig == NULL || EVP_DigestSignFinal(mctx, sig, &siglen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } } else { /* * Here we *must* use EVP_DigestSign() because Ed25519/Ed448 does not * support streaming via EVP_DigestSignUpdate/EVP_DigestSignFinal */ if (EVP_DigestSign(mctx, NULL, &siglen, hdata, hdatalen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } sig = OPENSSL_malloc(siglen); if (sig == NULL || EVP_DigestSign(mctx, sig, &siglen, hdata, hdatalen) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } } #ifndef OPENSSL_NO_GOST { int pktype = lu->sig; if (pktype == NID_id_GostR3410_2001 || pktype == NID_id_GostR3410_2012_256 || pktype == NID_id_GostR3410_2012_512) BUF_reverse(sig, NULL, siglen); } #endif if (!WPACKET_sub_memcpy_u16(pkt, sig, siglen)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } /* Digest cached records and discard handshake buffer */ if (!ssl3_digest_cached_records(s, 0)) { /* SSLfatal() already called */ goto err; } OPENSSL_free(sig); EVP_MD_CTX_free(mctx); return CON_FUNC_SUCCESS; err: OPENSSL_free(sig); EVP_MD_CTX_free(mctx); return CON_FUNC_ERROR; } MSG_PROCESS_RETURN tls_process_cert_verify(SSL_CONNECTION *s, PACKET *pkt) { EVP_PKEY *pkey = NULL; const unsigned char *data; #ifndef OPENSSL_NO_GOST unsigned char *gost_data = NULL; #endif MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR; int j; unsigned int len; const EVP_MD *md = NULL; size_t hdatalen = 0; void *hdata; unsigned char tls13tbs[TLS13_TBS_PREAMBLE_SIZE + EVP_MAX_MD_SIZE]; EVP_MD_CTX *mctx = EVP_MD_CTX_new(); EVP_PKEY_CTX *pctx = NULL; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (mctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } pkey = tls_get_peer_pkey(s); if (pkey == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (ssl_cert_lookup_by_pkey(pkey, NULL, sctx) == NULL) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_SIGNATURE_FOR_NON_SIGNING_CERTIFICATE); goto err; } if (SSL_USE_SIGALGS(s)) { unsigned int sigalg; if (!PACKET_get_net_2(pkt, &sigalg)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET); goto err; } if (tls12_check_peer_sigalg(s, sigalg, pkey) <= 0) { /* SSLfatal() already called */ goto err; } } else if (!tls1_set_peer_legacy_sigalg(s, pkey)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_LEGACY_SIGALG_DISALLOWED_OR_UNSUPPORTED); goto err; } if (!tls1_lookup_md(sctx, s->s3.tmp.peer_sigalg, &md)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (SSL_USE_SIGALGS(s)) OSSL_TRACE1(TLS, "USING TLSv1.2 HASH %s\n", md == NULL ? "n/a" : EVP_MD_get0_name(md)); /* Check for broken implementations of GOST ciphersuites */ /* * If key is GOST and len is exactly 64 or 128, it is signature without * length field (CryptoPro implementations at least till TLS 1.2) */ #ifndef OPENSSL_NO_GOST if (!SSL_USE_SIGALGS(s) && ((PACKET_remaining(pkt) == 64 && (EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2001 || EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_256)) || (PACKET_remaining(pkt) == 128 && EVP_PKEY_get_id(pkey) == NID_id_GostR3410_2012_512))) { len = PACKET_remaining(pkt); } else #endif if (!PACKET_get_net_2(pkt, &len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (!PACKET_get_bytes(pkt, &data, len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (!get_cert_verify_tbs_data(s, tls13tbs, &hdata, &hdatalen)) { /* SSLfatal() already called */ goto err; } OSSL_TRACE1(TLS, "Using client verify alg %s\n", md == NULL ? "n/a" : EVP_MD_get0_name(md)); if (EVP_DigestVerifyInit_ex(mctx, &pctx, md == NULL ? NULL : EVP_MD_get0_name(md), sctx->libctx, sctx->propq, pkey, NULL) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } #ifndef OPENSSL_NO_GOST { int pktype = EVP_PKEY_get_id(pkey); if (pktype == NID_id_GostR3410_2001 || pktype == NID_id_GostR3410_2012_256 || pktype == NID_id_GostR3410_2012_512) { if ((gost_data = OPENSSL_malloc(len)) == NULL) goto err; BUF_reverse(gost_data, data, len); data = gost_data; } } #endif if (SSL_USE_PSS(s)) { if (EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) <= 0 || EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, RSA_PSS_SALTLEN_DIGEST) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } } if (s->version == SSL3_VERSION) { if (EVP_DigestVerifyUpdate(mctx, hdata, hdatalen) <= 0 || EVP_MD_CTX_ctrl(mctx, EVP_CTRL_SSL3_MASTER_SECRET, (int)s->session->master_key_length, s->session->master_key) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_EVP_LIB); goto err; } if (EVP_DigestVerifyFinal(mctx, data, len) <= 0) { SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE); goto err; } } else { j = EVP_DigestVerify(mctx, data, len, hdata, hdatalen); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION /* Ignore bad signatures when fuzzing */ if (SSL_IS_QUIC_HANDSHAKE(s)) j = 1; #endif if (j <= 0) { SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_BAD_SIGNATURE); goto err; } } /* * In TLSv1.3 on the client side we make sure we prepare the client * certificate after the CertVerify instead of when we get the * CertificateRequest. This is because in TLSv1.3 the CertificateRequest * comes *before* the Certificate message. In TLSv1.2 it comes after. We * want to make sure that SSL_get1_peer_certificate() will return the actual * server certificate from the client_cert_cb callback. */ if (!s->server && SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.cert_req == 1) ret = MSG_PROCESS_CONTINUE_PROCESSING; else ret = MSG_PROCESS_CONTINUE_READING; err: BIO_free(s->s3.handshake_buffer); s->s3.handshake_buffer = NULL; EVP_MD_CTX_free(mctx); #ifndef OPENSSL_NO_GOST OPENSSL_free(gost_data); #endif return ret; } CON_FUNC_RETURN tls_construct_finished(SSL_CONNECTION *s, WPACKET *pkt) { size_t finish_md_len; const char *sender; size_t slen; SSL *ssl = SSL_CONNECTION_GET_SSL(s); /* This is a real handshake so make sure we clean it up at the end */ if (!s->server && s->post_handshake_auth != SSL_PHA_REQUESTED) s->statem.cleanuphand = 1; /* * If we attempted to write early data or we're in middlebox compat mode * then we deferred changing the handshake write keys to the last possible * moment. If we didn't already do this when we sent the client certificate * then we need to do it now. */ if (SSL_CONNECTION_IS_TLS13(s) && !s->server && (s->early_data_state != SSL_EARLY_DATA_NONE || (s->options & SSL_OP_ENABLE_MIDDLEBOX_COMPAT) != 0) && s->s3.tmp.cert_req == 0 && (!ssl->method->ssl3_enc->change_cipher_state(s, SSL3_CC_HANDSHAKE | SSL3_CHANGE_CIPHER_CLIENT_WRITE))) {; /* SSLfatal() already called */ return CON_FUNC_ERROR; } if (s->server) { sender = ssl->method->ssl3_enc->server_finished_label; slen = ssl->method->ssl3_enc->server_finished_label_len; } else { sender = ssl->method->ssl3_enc->client_finished_label; slen = ssl->method->ssl3_enc->client_finished_label_len; } finish_md_len = ssl->method->ssl3_enc->final_finish_mac(s, sender, slen, s->s3.tmp.finish_md); if (finish_md_len == 0) { /* SSLfatal() already called */ return CON_FUNC_ERROR; } s->s3.tmp.finish_md_len = finish_md_len; if (!WPACKET_memcpy(pkt, s->s3.tmp.finish_md, finish_md_len)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return CON_FUNC_ERROR; } /* * Log the master secret, if logging is enabled. We don't log it for * TLSv1.3: there's a different key schedule for that. */ if (!SSL_CONNECTION_IS_TLS13(s) && !ssl_log_secret(s, MASTER_SECRET_LABEL, s->session->master_key, s->session->master_key_length)) { /* SSLfatal() already called */ return CON_FUNC_ERROR; } /* * Copy the finished so we can use it for renegotiation checks */ if (!ossl_assert(finish_md_len <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return CON_FUNC_ERROR; } if (!s->server) { memcpy(s->s3.previous_client_finished, s->s3.tmp.finish_md, finish_md_len); s->s3.previous_client_finished_len = finish_md_len; } else { memcpy(s->s3.previous_server_finished, s->s3.tmp.finish_md, finish_md_len); s->s3.previous_server_finished_len = finish_md_len; } return CON_FUNC_SUCCESS; } CON_FUNC_RETURN tls_construct_key_update(SSL_CONNECTION *s, WPACKET *pkt) { if (!WPACKET_put_bytes_u8(pkt, s->key_update)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return CON_FUNC_ERROR; } s->key_update = SSL_KEY_UPDATE_NONE; return CON_FUNC_SUCCESS; } MSG_PROCESS_RETURN tls_process_key_update(SSL_CONNECTION *s, PACKET *pkt) { unsigned int updatetype; /* * A KeyUpdate message signals a key change so the end of the message must * be on a record boundary. */ if (RECORD_LAYER_processed_read_pending(&s->rlayer)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY); return MSG_PROCESS_ERROR; } if (!PACKET_get_1(pkt, &updatetype) || PACKET_remaining(pkt) != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_KEY_UPDATE); return MSG_PROCESS_ERROR; } /* * There are only two defined key update types. Fail if we get a value we * didn't recognise. */ if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED && updatetype != SSL_KEY_UPDATE_REQUESTED) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_BAD_KEY_UPDATE); return MSG_PROCESS_ERROR; } /* * If we get a request for us to update our sending keys too then, we need * to additionally send a KeyUpdate message. However that message should * not also request an update (otherwise we get into an infinite loop). */ if (updatetype == SSL_KEY_UPDATE_REQUESTED) s->key_update = SSL_KEY_UPDATE_NOT_REQUESTED; if (!tls13_update_key(s, 0)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } return MSG_PROCESS_FINISHED_READING; } /* * ssl3_take_mac calculates the Finished MAC for the handshakes messages seen * to far. */ int ssl3_take_mac(SSL_CONNECTION *s) { const char *sender; size_t slen; SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (!s->server) { sender = ssl->method->ssl3_enc->server_finished_label; slen = ssl->method->ssl3_enc->server_finished_label_len; } else { sender = ssl->method->ssl3_enc->client_finished_label; slen = ssl->method->ssl3_enc->client_finished_label_len; } s->s3.tmp.peer_finish_md_len = ssl->method->ssl3_enc->final_finish_mac(s, sender, slen, s->s3.tmp.peer_finish_md); if (s->s3.tmp.peer_finish_md_len == 0) { /* SSLfatal() already called */ return 0; } return 1; } MSG_PROCESS_RETURN tls_process_change_cipher_spec(SSL_CONNECTION *s, PACKET *pkt) { size_t remain; remain = PACKET_remaining(pkt); /* * 'Change Cipher Spec' is just a single byte, which should already have * been consumed by ssl_get_message() so there should be no bytes left, * unless we're using DTLS1_BAD_VER, which has an extra 2 bytes */ if (SSL_CONNECTION_IS_DTLS(s)) { if ((s->version == DTLS1_BAD_VER && remain != DTLS1_CCS_HEADER_LENGTH + 1) || (s->version != DTLS1_BAD_VER && remain != DTLS1_CCS_HEADER_LENGTH - 1)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC); return MSG_PROCESS_ERROR; } } else { if (remain != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_CHANGE_CIPHER_SPEC); return MSG_PROCESS_ERROR; } } /* Check we have a cipher to change to */ if (s->s3.tmp.new_cipher == NULL) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY); return MSG_PROCESS_ERROR; } s->s3.change_cipher_spec = 1; if (!ssl3_do_change_cipher_spec(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return MSG_PROCESS_ERROR; } if (SSL_CONNECTION_IS_DTLS(s)) { if (s->version == DTLS1_BAD_VER) s->d1->handshake_read_seq++; #ifndef OPENSSL_NO_SCTP /* * Remember that a CCS has been received, so that an old key of * SCTP-Auth can be deleted when a CCS is sent. Will be ignored if no * SCTP is used */ BIO_ctrl(SSL_get_wbio(SSL_CONNECTION_GET_SSL(s)), BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD, 1, NULL); #endif } return MSG_PROCESS_CONTINUE_READING; } MSG_PROCESS_RETURN tls_process_finished(SSL_CONNECTION *s, PACKET *pkt) { size_t md_len; SSL *ssl = SSL_CONNECTION_GET_SSL(s); int was_first = SSL_IS_FIRST_HANDSHAKE(s); int ok; /* This is a real handshake so make sure we clean it up at the end */ if (s->server) { /* * To get this far we must have read encrypted data from the client. We * no longer tolerate unencrypted alerts. This is ignored if less than * TLSv1.3 */ if (s->rlayer.rrlmethod->set_plain_alerts != NULL) s->rlayer.rrlmethod->set_plain_alerts(s->rlayer.rrl, 0); if (s->post_handshake_auth != SSL_PHA_REQUESTED) s->statem.cleanuphand = 1; if (SSL_CONNECTION_IS_TLS13(s) && !tls13_save_handshake_digest_for_pha(s)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } } /* * In TLSv1.3 a Finished message signals a key change so the end of the * message must be on a record boundary. */ if (SSL_CONNECTION_IS_TLS13(s) && RECORD_LAYER_processed_read_pending(&s->rlayer)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_NOT_ON_RECORD_BOUNDARY); return MSG_PROCESS_ERROR; } /* If this occurs, we have missed a message */ if (!SSL_CONNECTION_IS_TLS13(s) && !s->s3.change_cipher_spec) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_GOT_A_FIN_BEFORE_A_CCS); return MSG_PROCESS_ERROR; } s->s3.change_cipher_spec = 0; md_len = s->s3.tmp.peer_finish_md_len; if (md_len != PACKET_remaining(pkt)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_DIGEST_LENGTH); return MSG_PROCESS_ERROR; } ok = CRYPTO_memcmp(PACKET_data(pkt), s->s3.tmp.peer_finish_md, md_len); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (ok != 0) { if ((PACKET_data(pkt)[0] ^ s->s3.tmp.peer_finish_md[0]) != 0xFF) { ok = 0; } } #endif if (ok != 0) { SSLfatal(s, SSL_AD_DECRYPT_ERROR, SSL_R_DIGEST_CHECK_FAILED); return MSG_PROCESS_ERROR; } /* * Copy the finished so we can use it for renegotiation checks */ if (!ossl_assert(md_len <= EVP_MAX_MD_SIZE)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return MSG_PROCESS_ERROR; } if (s->server) { memcpy(s->s3.previous_client_finished, s->s3.tmp.peer_finish_md, md_len); s->s3.previous_client_finished_len = md_len; } else { memcpy(s->s3.previous_server_finished, s->s3.tmp.peer_finish_md, md_len); s->s3.previous_server_finished_len = md_len; } /* * In TLS1.3 we also have to change cipher state and do any final processing * of the initial server flight (if we are a client) */ if (SSL_CONNECTION_IS_TLS13(s)) { if (s->server) { if (s->post_handshake_auth != SSL_PHA_REQUESTED && !ssl->method->ssl3_enc->change_cipher_state(s, SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_SERVER_READ)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } } else { /* TLS 1.3 gets the secret size from the handshake md */ size_t dummy; if (!ssl->method->ssl3_enc->generate_master_secret(s, s->master_secret, s->handshake_secret, 0, &dummy)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } if (!ssl->method->ssl3_enc->change_cipher_state(s, SSL3_CC_APPLICATION | SSL3_CHANGE_CIPHER_CLIENT_READ)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } if (!tls_process_initial_server_flight(s)) { /* SSLfatal() already called */ return MSG_PROCESS_ERROR; } } } if (was_first && !SSL_IS_FIRST_HANDSHAKE(s) && s->rlayer.rrlmethod->set_first_handshake != NULL) s->rlayer.rrlmethod->set_first_handshake(s->rlayer.rrl, 0); return MSG_PROCESS_FINISHED_READING; } CON_FUNC_RETURN tls_construct_change_cipher_spec(SSL_CONNECTION *s, WPACKET *pkt) { if (!WPACKET_put_bytes_u8(pkt, SSL3_MT_CCS)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return CON_FUNC_ERROR; } return CON_FUNC_SUCCESS; } /* Add a certificate to the WPACKET */ static int ssl_add_cert_to_wpacket(SSL_CONNECTION *s, WPACKET *pkt, X509 *x, int chain, int for_comp) { int len; unsigned char *outbytes; int context = SSL_EXT_TLS1_3_CERTIFICATE; if (for_comp) context |= SSL_EXT_TLS1_3_CERTIFICATE_COMPRESSION; len = i2d_X509(x, NULL); if (len < 0) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_BUF_LIB); return 0; } if (!WPACKET_sub_allocate_bytes_u24(pkt, len, &outbytes) || i2d_X509(x, &outbytes) != len) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if ((SSL_CONNECTION_IS_TLS13(s) || for_comp) && !tls_construct_extensions(s, pkt, context, x, chain)) { /* SSLfatal() already called */ return 0; } return 1; } /* Add certificate chain to provided WPACKET */ static int ssl_add_cert_chain(SSL_CONNECTION *s, WPACKET *pkt, CERT_PKEY *cpk, int for_comp) { int i, chain_count; X509 *x; STACK_OF(X509) *extra_certs; STACK_OF(X509) *chain = NULL; X509_STORE *chain_store; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (cpk == NULL || cpk->x509 == NULL) return 1; x = cpk->x509; /* * If we have a certificate specific chain use it, else use parent ctx. */ if (cpk->chain != NULL) extra_certs = cpk->chain; else extra_certs = sctx->extra_certs; if ((s->mode & SSL_MODE_NO_AUTO_CHAIN) || extra_certs) chain_store = NULL; else if (s->cert->chain_store) chain_store = s->cert->chain_store; else chain_store = sctx->cert_store; if (chain_store != NULL) { X509_STORE_CTX *xs_ctx = X509_STORE_CTX_new_ex(sctx->libctx, sctx->propq); if (xs_ctx == NULL) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB); return 0; } if (!X509_STORE_CTX_init(xs_ctx, chain_store, x, NULL)) { X509_STORE_CTX_free(xs_ctx); if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_X509_LIB); return 0; } /* * It is valid for the chain not to be complete (because normally we * don't include the root cert in the chain). Therefore we deliberately * ignore the error return from this call. We're not actually verifying * the cert - we're just building as much of the chain as we can */ (void)X509_verify_cert(xs_ctx); /* Don't leave errors in the queue */ ERR_clear_error(); chain = X509_STORE_CTX_get0_chain(xs_ctx); i = ssl_security_cert_chain(s, chain, NULL, 0); if (i != 1) { #if 0 /* Dummy error calls so mkerr generates them */ ERR_raise(ERR_LIB_SSL, SSL_R_EE_KEY_TOO_SMALL); ERR_raise(ERR_LIB_SSL, SSL_R_CA_KEY_TOO_SMALL); ERR_raise(ERR_LIB_SSL, SSL_R_CA_MD_TOO_WEAK); #endif X509_STORE_CTX_free(xs_ctx); if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, i); return 0; } chain_count = sk_X509_num(chain); for (i = 0; i < chain_count; i++) { x = sk_X509_value(chain, i); if (!ssl_add_cert_to_wpacket(s, pkt, x, i, for_comp)) { /* SSLfatal() already called */ X509_STORE_CTX_free(xs_ctx); return 0; } } X509_STORE_CTX_free(xs_ctx); } else { i = ssl_security_cert_chain(s, extra_certs, x, 0); if (i != 1) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, i); return 0; } if (!ssl_add_cert_to_wpacket(s, pkt, x, 0, for_comp)) { /* SSLfatal() already called */ return 0; } for (i = 0; i < sk_X509_num(extra_certs); i++) { x = sk_X509_value(extra_certs, i); if (!ssl_add_cert_to_wpacket(s, pkt, x, i + 1, for_comp)) { /* SSLfatal() already called */ return 0; } } } return 1; } EVP_PKEY* tls_get_peer_pkey(const SSL_CONNECTION *sc) { if (sc->session->peer_rpk != NULL) return sc->session->peer_rpk; if (sc->session->peer != NULL) return X509_get0_pubkey(sc->session->peer); return NULL; } int tls_process_rpk(SSL_CONNECTION *sc, PACKET *pkt, EVP_PKEY **peer_rpk) { EVP_PKEY *pkey = NULL; int ret = 0; RAW_EXTENSION *rawexts = NULL; PACKET extensions; PACKET context; unsigned long cert_len = 0, spki_len = 0; const unsigned char *spki, *spkistart; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(sc); /*- * ---------------------------- * TLS 1.3 Certificate message: * ---------------------------- * https://datatracker.ietf.org/doc/html/rfc8446#section-4.4.2 * * enum { * X509(0), * RawPublicKey(2), * (255) * } CertificateType; * * struct { * select (certificate_type) { * case RawPublicKey: * // From RFC 7250 ASN.1_subjectPublicKeyInfo * opaque ASN1_subjectPublicKeyInfo<1..2^24-1>; * * case X509: * opaque cert_data<1..2^24-1>; * }; * Extension extensions<0..2^16-1>; * } CertificateEntry; * * struct { * opaque certificate_request_context<0..2^8-1>; * CertificateEntry certificate_list<0..2^24-1>; * } Certificate; * * The client MUST send a Certificate message if and only if the server * has requested client authentication via a CertificateRequest message * (Section 4.3.2). If the server requests client authentication but no * suitable certificate is available, the client MUST send a Certificate * message containing no certificates (i.e., with the "certificate_list" * field having length 0). * * ---------------------------- * TLS 1.2 Certificate message: * ---------------------------- * https://datatracker.ietf.org/doc/html/rfc7250#section-3 * * opaque ASN.1Cert<1..2^24-1>; * * struct { * select(certificate_type){ * * // certificate type defined in this document. * case RawPublicKey: * opaque ASN.1_subjectPublicKeyInfo<1..2^24-1>; * * // X.509 certificate defined in RFC 5246 * case X.509: * ASN.1Cert certificate_list<0..2^24-1>; * * // Additional certificate type based on * // "TLS Certificate Types" subregistry * }; * } Certificate; * * ------------- * Consequently: * ------------- * After the (TLS 1.3 only) context octet string (1 byte length + data) the * Certificate message has a 3-byte length that is zero in the client to * server message when the client has no RPK to send. In that case, there * are no (TLS 1.3 only) per-certificate extensions either, because the * [CertificateEntry] list is empty. * * In the server to client direction, or when the client had an RPK to send, * the TLS 1.3 message just prepends the length of the RPK+extensions, * while TLS <= 1.2 sends just the RPK (octet-string). * * The context must be zero-length in the server to client direction, and * must match the value recorded in the certificate request in the client * to server direction. */ if (SSL_CONNECTION_IS_TLS13(sc)) { if (!PACKET_get_length_prefixed_1(pkt, &context)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); goto err; } if (sc->server) { if (sc->pha_context == NULL) { if (PACKET_remaining(&context) != 0) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); goto err; } } else { if (!PACKET_equal(&context, sc->pha_context, sc->pha_context_len)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); goto err; } } } else { if (PACKET_remaining(&context) != 0) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_INVALID_CONTEXT); goto err; } } } if (!PACKET_get_net_3(pkt, &cert_len) || PACKET_remaining(pkt) != cert_len) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } /* * The list length may be zero when there is no RPK. In the case of TLS * 1.2 this is actually the RPK length, which cannot be zero as specified, * but that breaks the ability of the client to decline client auth. We * overload the 0 RPK length to mean "no RPK". This interpretation is * also used some other (reference?) implementations, but is not supported * by the verbatim RFC7250 text. */ if (cert_len == 0) return 1; if (SSL_CONNECTION_IS_TLS13(sc)) { /* * With TLS 1.3, a non-empty explicit-length RPK octet-string followed * by a possibly empty extension block. */ if (!PACKET_get_net_3(pkt, &spki_len)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (spki_len == 0) { /* empty RPK */ SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_EMPTY_RAW_PUBLIC_KEY); goto err; } } else { spki_len = cert_len; } if (!PACKET_get_bytes(pkt, &spki, spki_len)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } spkistart = spki; if ((pkey = d2i_PUBKEY_ex(NULL, &spki, spki_len, sctx->libctx, sctx->propq)) == NULL || spki != (spkistart + spki_len)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (EVP_PKEY_missing_parameters(pkey)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_UNABLE_TO_FIND_PUBLIC_KEY_PARAMETERS); goto err; } /* Process the Extensions block */ if (SSL_CONNECTION_IS_TLS13(sc)) { if (PACKET_remaining(pkt) != (cert_len - 3 - spki_len)) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH); goto err; } if (!PACKET_as_length_prefixed_2(pkt, &extensions) || PACKET_remaining(pkt) != 0) { SSLfatal(sc, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } if (!tls_collect_extensions(sc, &extensions, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, &rawexts, NULL, 1)) { /* SSLfatal already called */ goto err; } /* chain index is always zero and fin always 1 for RPK */ if (!tls_parse_all_extensions(sc, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, rawexts, NULL, 0, 1)) { /* SSLfatal already called */ goto err; } } ret = 1; if (peer_rpk != NULL) { *peer_rpk = pkey; pkey = NULL; } err: OPENSSL_free(rawexts); EVP_PKEY_free(pkey); return ret; } unsigned long tls_output_rpk(SSL_CONNECTION *sc, WPACKET *pkt, CERT_PKEY *cpk) { int pdata_len = 0; unsigned char *pdata = NULL; X509_PUBKEY *xpk = NULL; unsigned long ret = 0; X509 *x509 = NULL; if (cpk != NULL && cpk->x509 != NULL) { x509 = cpk->x509; /* Get the RPK from the certificate */ xpk = X509_get_X509_PUBKEY(cpk->x509); if (xpk == NULL) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } pdata_len = i2d_X509_PUBKEY(xpk, &pdata); } else if (cpk != NULL && cpk->privatekey != NULL) { /* Get the RPK from the private key */ pdata_len = i2d_PUBKEY(cpk->privatekey, &pdata); } else { /* The server RPK is not optional */ if (sc->server) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } /* The client can send a zero length certificate list */ if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } return 1; } if (pdata_len <= 0) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } /* * TLSv1.2 is _just_ the raw public key * TLSv1.3 includes extensions, so there's a length wrapper */ if (SSL_CONNECTION_IS_TLS13(sc)) { if (!WPACKET_start_sub_packet_u24(pkt)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } } if (!WPACKET_sub_memcpy_u24(pkt, pdata, pdata_len)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (SSL_CONNECTION_IS_TLS13(sc)) { /* * Only send extensions relevant to raw public keys. Until such * extensions are defined, this will be an empty set of extensions. * |x509| may be NULL, which raw public-key extensions need to handle. */ if (!tls_construct_extensions(sc, pkt, SSL_EXT_TLS1_3_RAW_PUBLIC_KEY, x509, 0)) { /* SSLfatal() already called */ goto err; } if (!WPACKET_close(pkt)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } } ret = 1; err: OPENSSL_free(pdata); return ret; } unsigned long ssl3_output_cert_chain(SSL_CONNECTION *s, WPACKET *pkt, CERT_PKEY *cpk, int for_comp) { if (!WPACKET_start_sub_packet_u24(pkt)) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if (!ssl_add_cert_chain(s, pkt, cpk, for_comp)) return 0; if (!WPACKET_close(pkt)) { if (!for_comp) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } /* * Tidy up after the end of a handshake. In the case of SCTP this may result * in NBIO events. If |clearbufs| is set then init_buf and the wbio buffer is * freed up as well. */ WORK_STATE tls_finish_handshake(SSL_CONNECTION *s, ossl_unused WORK_STATE wst, int clearbufs, int stop) { void (*cb) (const SSL *ssl, int type, int val) = NULL; int cleanuphand = s->statem.cleanuphand; SSL *ssl = SSL_CONNECTION_GET_SSL(s); SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (clearbufs) { if (!SSL_CONNECTION_IS_DTLS(s) #ifndef OPENSSL_NO_SCTP /* * RFC6083: SCTP provides a reliable and in-sequence transport service for DTLS * messages that require it. Therefore, DTLS procedures for retransmissions * MUST NOT be used. * Hence the init_buf can be cleared when DTLS over SCTP as transport is used. */ || BIO_dgram_is_sctp(SSL_get_wbio(ssl)) #endif ) { /* * We don't do this in DTLS over UDP because we may still need the init_buf * in case there are any unexpected retransmits */ BUF_MEM_free(s->init_buf); s->init_buf = NULL; } if (!ssl_free_wbio_buffer(s)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return WORK_ERROR; } s->init_num = 0; } if (SSL_CONNECTION_IS_TLS13(s) && !s->server && s->post_handshake_auth == SSL_PHA_REQUESTED) s->post_handshake_auth = SSL_PHA_EXT_SENT; /* * Only set if there was a Finished message and this isn't after a TLSv1.3 * post handshake exchange */ if (cleanuphand) { /* skipped if we just sent a HelloRequest */ s->renegotiate = 0; s->new_session = 0; s->statem.cleanuphand = 0; s->ext.ticket_expected = 0; ssl3_cleanup_key_block(s); if (s->server) { /* * In TLSv1.3 we update the cache as part of constructing the * NewSessionTicket */ if (!SSL_CONNECTION_IS_TLS13(s)) ssl_update_cache(s, SSL_SESS_CACHE_SERVER); /* N.B. s->ctx may not equal s->session_ctx */ ssl_tsan_counter(sctx, &sctx->stats.sess_accept_good); s->handshake_func = ossl_statem_accept; } else { if (SSL_CONNECTION_IS_TLS13(s)) { /* * We encourage applications to only use TLSv1.3 tickets once, * so we remove this one from the cache. */ if ((s->session_ctx->session_cache_mode & SSL_SESS_CACHE_CLIENT) != 0) SSL_CTX_remove_session(s->session_ctx, s->session); } else { /* * In TLSv1.3 we update the cache as part of processing the * NewSessionTicket */ ssl_update_cache(s, SSL_SESS_CACHE_CLIENT); } if (s->hit) ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_hit); s->handshake_func = ossl_statem_connect; ssl_tsan_counter(s->session_ctx, &s->session_ctx->stats.sess_connect_good); } if (SSL_CONNECTION_IS_DTLS(s)) { /* done with handshaking */ s->d1->handshake_read_seq = 0; s->d1->handshake_write_seq = 0; s->d1->next_handshake_write_seq = 0; dtls1_clear_received_buffer(s); } } if (s->info_callback != NULL) cb = s->info_callback; else if (sctx->info_callback != NULL) cb = sctx->info_callback; /* The callback may expect us to not be in init at handshake done */ ossl_statem_set_in_init(s, 0); if (cb != NULL) { if (cleanuphand || !SSL_CONNECTION_IS_TLS13(s) || SSL_IS_FIRST_HANDSHAKE(s)) cb(ssl, SSL_CB_HANDSHAKE_DONE, 1); } if (!stop) { /* If we've got more work to do we go back into init */ ossl_statem_set_in_init(s, 1); return WORK_FINISHED_CONTINUE; } return WORK_FINISHED_STOP; } int tls_get_message_header(SSL_CONNECTION *s, int *mt) { /* s->init_num < SSL3_HM_HEADER_LENGTH */ int skip_message, i; uint8_t recvd_type; unsigned char *p; size_t l, readbytes; SSL *ssl = SSL_CONNECTION_GET_SSL(s); p = (unsigned char *)s->init_buf->data; do { while (s->init_num < SSL3_HM_HEADER_LENGTH) { i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, &recvd_type, &p[s->init_num], SSL3_HM_HEADER_LENGTH - s->init_num, 0, &readbytes); if (i <= 0) { s->rwstate = SSL_READING; return 0; } if (recvd_type == SSL3_RT_CHANGE_CIPHER_SPEC) { /* * A ChangeCipherSpec must be a single byte and may not occur * in the middle of a handshake message. */ if (s->init_num != 0 || readbytes != 1 || p[0] != SSL3_MT_CCS) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_BAD_CHANGE_CIPHER_SPEC); return 0; } if (s->statem.hand_state == TLS_ST_BEFORE && (s->s3.flags & TLS1_FLAGS_STATELESS) != 0) { /* * We are stateless and we received a CCS. Probably this is * from a client between the first and second ClientHellos. * We should ignore this, but return an error because we do * not return success until we see the second ClientHello * with a valid cookie. */ return 0; } s->s3.tmp.message_type = *mt = SSL3_MT_CHANGE_CIPHER_SPEC; s->init_num = readbytes - 1; s->init_msg = s->init_buf->data; s->s3.tmp.message_size = readbytes; return 1; } else if (recvd_type != SSL3_RT_HANDSHAKE) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY); return 0; } s->init_num += readbytes; } skip_message = 0; if (!s->server) if (s->statem.hand_state != TLS_ST_OK && p[0] == SSL3_MT_HELLO_REQUEST) /* * The server may always send 'Hello Request' messages -- * we are doing a handshake anyway now, so ignore them if * their format is correct. Does not count for 'Finished' * MAC. */ if (p[1] == 0 && p[2] == 0 && p[3] == 0) { s->init_num = 0; skip_message = 1; if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, p, SSL3_HM_HEADER_LENGTH, ssl, s->msg_callback_arg); } } while (skip_message); /* s->init_num == SSL3_HM_HEADER_LENGTH */ *mt = *p; s->s3.tmp.message_type = *(p++); if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) { /* * Only happens with SSLv3+ in an SSLv2 backward compatible * ClientHello * * Total message size is the remaining record bytes to read * plus the SSL3_HM_HEADER_LENGTH bytes that we already read */ l = s->rlayer.tlsrecs[0].length + SSL3_HM_HEADER_LENGTH; s->s3.tmp.message_size = l; s->init_msg = s->init_buf->data; s->init_num = SSL3_HM_HEADER_LENGTH; } else { n2l3(p, l); /* BUF_MEM_grow takes an 'int' parameter */ if (l > (INT_MAX - SSL3_HM_HEADER_LENGTH)) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_EXCESSIVE_MESSAGE_SIZE); return 0; } s->s3.tmp.message_size = l; s->init_msg = s->init_buf->data + SSL3_HM_HEADER_LENGTH; s->init_num = 0; } return 1; } int tls_get_message_body(SSL_CONNECTION *s, size_t *len) { size_t n, readbytes; unsigned char *p; int i; SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (s->s3.tmp.message_type == SSL3_MT_CHANGE_CIPHER_SPEC) { /* We've already read everything in */ *len = (unsigned long)s->init_num; return 1; } p = s->init_msg; n = s->s3.tmp.message_size - s->init_num; while (n > 0) { i = ssl->method->ssl_read_bytes(ssl, SSL3_RT_HANDSHAKE, NULL, &p[s->init_num], n, 0, &readbytes); if (i <= 0) { s->rwstate = SSL_READING; *len = 0; return 0; } s->init_num += readbytes; n -= readbytes; } /* * If receiving Finished, record MAC of prior handshake messages for * Finished verification. */ if (*(s->init_buf->data) == SSL3_MT_FINISHED && !ssl3_take_mac(s)) { /* SSLfatal() already called */ *len = 0; return 0; } /* Feed this message into MAC computation. */ if (RECORD_LAYER_is_sslv2_record(&s->rlayer)) { if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, s->init_num)) { /* SSLfatal() already called */ *len = 0; return 0; } if (s->msg_callback) s->msg_callback(0, SSL2_VERSION, 0, s->init_buf->data, (size_t)s->init_num, ssl, s->msg_callback_arg); } else { /* * We defer feeding in the HRR until later. We'll do it as part of * processing the message * The TLsv1.3 handshake transcript stops at the ClientFinished * message. */ #define SERVER_HELLO_RANDOM_OFFSET (SSL3_HM_HEADER_LENGTH + 2) /* KeyUpdate and NewSessionTicket do not need to be added */ if (!SSL_CONNECTION_IS_TLS13(s) || (s->s3.tmp.message_type != SSL3_MT_NEWSESSION_TICKET && s->s3.tmp.message_type != SSL3_MT_KEY_UPDATE)) { if (s->s3.tmp.message_type != SSL3_MT_SERVER_HELLO || s->init_num < SERVER_HELLO_RANDOM_OFFSET + SSL3_RANDOM_SIZE || memcmp(hrrrandom, s->init_buf->data + SERVER_HELLO_RANDOM_OFFSET, SSL3_RANDOM_SIZE) != 0) { if (!ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, s->init_num + SSL3_HM_HEADER_LENGTH)) { /* SSLfatal() already called */ *len = 0; return 0; } } } if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_HANDSHAKE, s->init_buf->data, (size_t)s->init_num + SSL3_HM_HEADER_LENGTH, ssl, s->msg_callback_arg); } *len = s->init_num; return 1; } static const X509ERR2ALERT x509table[] = { {X509_V_ERR_APPLICATION_VERIFICATION, SSL_AD_HANDSHAKE_FAILURE}, {X509_V_ERR_CA_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_EC_KEY_EXPLICIT_PARAMS, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CA_MD_TOO_WEAK, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CERT_CHAIN_TOO_LONG, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_CERT_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED}, {X509_V_ERR_CERT_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CERT_REJECTED, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CERT_REVOKED, SSL_AD_CERTIFICATE_REVOKED}, {X509_V_ERR_CERT_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR}, {X509_V_ERR_CERT_UNTRUSTED, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CRL_HAS_EXPIRED, SSL_AD_CERTIFICATE_EXPIRED}, {X509_V_ERR_CRL_NOT_YET_VALID, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_CRL_SIGNATURE_FAILURE, SSL_AD_DECRYPT_ERROR}, {X509_V_ERR_DANE_NO_MATCH, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_EE_KEY_TOO_SMALL, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_EMAIL_MISMATCH, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_HOSTNAME_MISMATCH, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_INVALID_CA, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_INVALID_CALL, SSL_AD_INTERNAL_ERROR}, {X509_V_ERR_INVALID_PURPOSE, SSL_AD_UNSUPPORTED_CERTIFICATE}, {X509_V_ERR_IP_ADDRESS_MISMATCH, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_OUT_OF_MEM, SSL_AD_INTERNAL_ERROR}, {X509_V_ERR_PATH_LENGTH_EXCEEDED, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_STORE_LOOKUP, SSL_AD_INTERNAL_ERROR}, {X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE, SSL_AD_BAD_CERTIFICATE}, {X509_V_ERR_UNABLE_TO_GET_CRL, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE, SSL_AD_UNKNOWN_CA}, {X509_V_ERR_UNSPECIFIED, SSL_AD_INTERNAL_ERROR}, /* Last entry; return this if we don't find the value above. */ {X509_V_OK, SSL_AD_CERTIFICATE_UNKNOWN} }; int ssl_x509err2alert(int x509err) { const X509ERR2ALERT *tp; for (tp = x509table; tp->x509err != X509_V_OK; ++tp) if (tp->x509err == x509err) break; return tp->alert; } int ssl_allow_compression(SSL_CONNECTION *s) { if (s->options & SSL_OP_NO_COMPRESSION) return 0; return ssl_security(s, SSL_SECOP_COMPRESSION, 0, 0, NULL); } /* * SSL/TLS/DTLS version comparison * * Returns * 0 if versiona is equal to versionb * 1 if versiona is greater than versionb * -1 if versiona is less than versionb */ int ssl_version_cmp(const SSL_CONNECTION *s, int versiona, int versionb) { int dtls = SSL_CONNECTION_IS_DTLS(s); if (versiona == versionb) return 0; if (!dtls) return versiona < versionb ? -1 : 1; return DTLS_VERSION_LT(versiona, versionb) ? -1 : 1; } typedef struct { int version; const SSL_METHOD *(*cmeth) (void); const SSL_METHOD *(*smeth) (void); } version_info; #if TLS_MAX_VERSION_INTERNAL != TLS1_3_VERSION # error Code needs update for TLS_method() support beyond TLS1_3_VERSION. #endif /* Must be in order high to low */ static const version_info tls_version_table[] = { #ifndef OPENSSL_NO_TLS1_3 {TLS1_3_VERSION, tlsv1_3_client_method, tlsv1_3_server_method}, #else {TLS1_3_VERSION, NULL, NULL}, #endif #ifndef OPENSSL_NO_TLS1_2 {TLS1_2_VERSION, tlsv1_2_client_method, tlsv1_2_server_method}, #else {TLS1_2_VERSION, NULL, NULL}, #endif #ifndef OPENSSL_NO_TLS1_1 {TLS1_1_VERSION, tlsv1_1_client_method, tlsv1_1_server_method}, #else {TLS1_1_VERSION, NULL, NULL}, #endif #ifndef OPENSSL_NO_TLS1 {TLS1_VERSION, tlsv1_client_method, tlsv1_server_method}, #else {TLS1_VERSION, NULL, NULL}, #endif #ifndef OPENSSL_NO_SSL3 {SSL3_VERSION, sslv3_client_method, sslv3_server_method}, #else {SSL3_VERSION, NULL, NULL}, #endif {0, NULL, NULL}, }; #if DTLS_MAX_VERSION_INTERNAL != DTLS1_2_VERSION # error Code needs update for DTLS_method() support beyond DTLS1_2_VERSION. #endif /* Must be in order high to low */ static const version_info dtls_version_table[] = { #ifndef OPENSSL_NO_DTLS1_2 {DTLS1_2_VERSION, dtlsv1_2_client_method, dtlsv1_2_server_method}, #else {DTLS1_2_VERSION, NULL, NULL}, #endif #ifndef OPENSSL_NO_DTLS1 {DTLS1_VERSION, dtlsv1_client_method, dtlsv1_server_method}, {DTLS1_BAD_VER, dtls_bad_ver_client_method, NULL}, #else {DTLS1_VERSION, NULL, NULL}, {DTLS1_BAD_VER, NULL, NULL}, #endif {0, NULL, NULL}, }; /* * ssl_method_error - Check whether an SSL_METHOD is enabled. * * @s: The SSL handle for the candidate method * @method: the intended method. * * Returns 0 on success, or an SSL error reason on failure. */ static int ssl_method_error(const SSL_CONNECTION *s, const SSL_METHOD *method) { int version = method->version; if ((s->min_proto_version != 0 && ssl_version_cmp(s, version, s->min_proto_version) < 0) || ssl_security(s, SSL_SECOP_VERSION, 0, version, NULL) == 0) return SSL_R_VERSION_TOO_LOW; if (s->max_proto_version != 0 && ssl_version_cmp(s, version, s->max_proto_version) > 0) return SSL_R_VERSION_TOO_HIGH; if ((s->options & method->mask) != 0) return SSL_R_UNSUPPORTED_PROTOCOL; if ((method->flags & SSL_METHOD_NO_SUITEB) != 0 && tls1_suiteb(s)) return SSL_R_AT_LEAST_TLS_1_2_NEEDED_IN_SUITEB_MODE; return 0; } /* * Only called by servers. Returns 1 if the server has a TLSv1.3 capable * certificate type, or has PSK or a certificate callback configured, or has * a servername callback configure. Otherwise returns 0. */ static int is_tls13_capable(const SSL_CONNECTION *s) { size_t i; int curve; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); if (!ossl_assert(sctx != NULL) || !ossl_assert(s->session_ctx != NULL)) return 0; /* * A servername callback can change the available certs, so if a servername * cb is set then we just assume TLSv1.3 will be ok */ if (sctx->ext.servername_cb != NULL || s->session_ctx->ext.servername_cb != NULL) return 1; #ifndef OPENSSL_NO_PSK if (s->psk_server_callback != NULL) return 1; #endif if (s->psk_find_session_cb != NULL || s->cert->cert_cb != NULL) return 1; /* All provider-based sig algs are required to support at least TLS1.3 */ for (i = 0; i < s->ssl_pkey_num; i++) { /* Skip over certs disallowed for TLSv1.3 */ switch (i) { case SSL_PKEY_DSA_SIGN: case SSL_PKEY_GOST01: case SSL_PKEY_GOST12_256: case SSL_PKEY_GOST12_512: continue; default: break; } if (!ssl_has_cert(s, i)) continue; if (i != SSL_PKEY_ECC) return 1; /* * Prior to TLSv1.3 sig algs allowed any curve to be used. TLSv1.3 is * more restrictive so check that our sig algs are consistent with this * EC cert. See section 4.2.3 of RFC8446. */ curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC].privatekey); if (tls_check_sigalg_curve(s, curve)) return 1; } return 0; } /* * ssl_version_supported - Check that the specified `version` is supported by * `SSL *` instance * * @s: The SSL handle for the candidate method * @version: Protocol version to test against * * Returns 1 when supported, otherwise 0 */ int ssl_version_supported(const SSL_CONNECTION *s, int version, const SSL_METHOD **meth) { const version_info *vent; const version_info *table; switch (SSL_CONNECTION_GET_SSL(s)->method->version) { default: /* Version should match method version for non-ANY method */ return ssl_version_cmp(s, version, s->version) == 0; case TLS_ANY_VERSION: table = tls_version_table; break; case DTLS_ANY_VERSION: table = dtls_version_table; break; } for (vent = table; vent->version != 0 && ssl_version_cmp(s, version, vent->version) <= 0; ++vent) { const SSL_METHOD *(*thismeth)(void) = s->server ? vent->smeth : vent->cmeth; if (thismeth != NULL && ssl_version_cmp(s, version, vent->version) == 0 && ssl_method_error(s, thismeth()) == 0 && (!s->server || version != TLS1_3_VERSION || is_tls13_capable(s))) { if (meth != NULL) *meth = thismeth(); return 1; } } return 0; } /* * ssl_check_version_downgrade - In response to RFC7507 SCSV version * fallback indication from a client check whether we're using the highest * supported protocol version. * * @s server SSL handle. * * Returns 1 when using the highest enabled version, 0 otherwise. */ int ssl_check_version_downgrade(SSL_CONNECTION *s) { const version_info *vent; const version_info *table; SSL *ssl = SSL_CONNECTION_GET_SSL(s); /* * Check that the current protocol is the highest enabled version * (according to ssl->defltmethod, as version negotiation may have changed * s->method). */ if (s->version == ssl->defltmeth->version) return 1; /* * Apparently we're using a version-flexible SSL_METHOD (not at its * highest protocol version). */ if (ssl->defltmeth->version == TLS_method()->version) table = tls_version_table; else if (ssl->defltmeth->version == DTLS_method()->version) table = dtls_version_table; else { /* Unexpected state; fail closed. */ return 0; } for (vent = table; vent->version != 0; ++vent) { if (vent->smeth != NULL && ssl_method_error(s, vent->smeth()) == 0) return s->version == vent->version; } return 0; } /* * ssl_set_version_bound - set an upper or lower bound on the supported (D)TLS * protocols, provided the initial (D)TLS method is version-flexible. This * function sanity-checks the proposed value and makes sure the method is * version-flexible, then sets the limit if all is well. * * @method_version: The version of the current SSL_METHOD. * @version: the intended limit. * @bound: pointer to limit to be updated. * * Returns 1 on success, 0 on failure. */ int ssl_set_version_bound(int method_version, int version, int *bound) { int valid_tls; int valid_dtls; if (version == 0) { *bound = version; return 1; } valid_tls = version >= SSL3_VERSION && version <= TLS_MAX_VERSION_INTERNAL; valid_dtls = /* We support client side pre-standardisation version of DTLS */ (version == DTLS1_BAD_VER) || (DTLS_VERSION_LE(version, DTLS_MAX_VERSION_INTERNAL) && DTLS_VERSION_GE(version, DTLS1_VERSION)); if (!valid_tls && !valid_dtls) return 0; /*- * Restrict TLS methods to TLS protocol versions. * Restrict DTLS methods to DTLS protocol versions. * Note, DTLS version numbers are decreasing, use comparison macros. * * Note that for both lower-bounds we use explicit versions, not * (D)TLS_MIN_VERSION. This is because we don't want to break user * configurations. If the MIN (supported) version ever rises, the user's * "floor" remains valid even if no longer available. We don't expect the * MAX ceiling to ever get lower, so making that variable makes sense. * * We ignore attempts to set bounds on version-inflexible methods, * returning success. */ switch (method_version) { default: break; case TLS_ANY_VERSION: if (valid_tls) *bound = version; break; case DTLS_ANY_VERSION: if (valid_dtls) *bound = version; break; } return 1; } static void check_for_downgrade(SSL_CONNECTION *s, int vers, DOWNGRADE *dgrd) { if (vers == TLS1_2_VERSION && ssl_version_supported(s, TLS1_3_VERSION, NULL)) { *dgrd = DOWNGRADE_TO_1_2; } else if (!SSL_CONNECTION_IS_DTLS(s) && vers < TLS1_2_VERSION /* * We need to ensure that a server that disables TLSv1.2 * (creating a hole between TLSv1.3 and TLSv1.1) can still * complete handshakes with clients that support TLSv1.2 and * below. Therefore we do not enable the sentinel if TLSv1.3 is * enabled and TLSv1.2 is not. */ && ssl_version_supported(s, TLS1_2_VERSION, NULL)) { *dgrd = DOWNGRADE_TO_1_1; } else { *dgrd = DOWNGRADE_NONE; } } /* * ssl_choose_server_version - Choose server (D)TLS version. Called when the * client HELLO is received to select the final server protocol version and * the version specific method. * * @s: server SSL handle. * * Returns 0 on success or an SSL error reason number on failure. */ int ssl_choose_server_version(SSL_CONNECTION *s, CLIENTHELLO_MSG *hello, DOWNGRADE *dgrd) { /*- * With version-flexible methods we have an initial state with: * * s->method->version == (D)TLS_ANY_VERSION, * s->version == (D)TLS_MAX_VERSION_INTERNAL. * * So we detect version-flexible methods via the method version, not the * handle version. */ SSL *ssl = SSL_CONNECTION_GET_SSL(s); int server_version = ssl->method->version; int client_version = hello->legacy_version; const version_info *vent; const version_info *table; int disabled = 0; RAW_EXTENSION *suppversions; s->client_version = client_version; switch (server_version) { default: if (!SSL_CONNECTION_IS_TLS13(s)) { if (ssl_version_cmp(s, client_version, s->version) < 0) return SSL_R_WRONG_SSL_VERSION; *dgrd = DOWNGRADE_NONE; /* * If this SSL handle is not from a version flexible method we don't * (and never did) check min/max FIPS or Suite B constraints. Hope * that's OK. It is up to the caller to not choose fixed protocol * versions they don't want. If not, then easy to fix, just return * ssl_method_error(s, s->method) */ return 0; } /* * Fall through if we are TLSv1.3 already (this means we must be after * a HelloRetryRequest */ /* fall thru */ case TLS_ANY_VERSION: table = tls_version_table; break; case DTLS_ANY_VERSION: table = dtls_version_table; break; } suppversions = &hello->pre_proc_exts[TLSEXT_IDX_supported_versions]; /* If we did an HRR then supported versions is mandatory */ if (!suppversions->present && s->hello_retry_request != SSL_HRR_NONE) return SSL_R_UNSUPPORTED_PROTOCOL; if (suppversions->present && !SSL_CONNECTION_IS_DTLS(s)) { unsigned int candidate_vers = 0; unsigned int best_vers = 0; const SSL_METHOD *best_method = NULL; PACKET versionslist; suppversions->parsed = 1; if (!PACKET_as_length_prefixed_1(&suppversions->data, &versionslist)) { /* Trailing or invalid data? */ return SSL_R_LENGTH_MISMATCH; } /* * The TLSv1.3 spec says the client MUST set this to TLS1_2_VERSION. * The spec only requires servers to check that it isn't SSLv3: * "Any endpoint receiving a Hello message with * ClientHello.legacy_version or ServerHello.legacy_version set to * 0x0300 MUST abort the handshake with a "protocol_version" alert." * We are slightly stricter and require that it isn't SSLv3 or lower. * We tolerate TLSv1 and TLSv1.1. */ if (client_version <= SSL3_VERSION) return SSL_R_BAD_LEGACY_VERSION; while (PACKET_get_net_2(&versionslist, &candidate_vers)) { if (ssl_version_cmp(s, candidate_vers, best_vers) <= 0) continue; if (ssl_version_supported(s, candidate_vers, &best_method)) best_vers = candidate_vers; } if (PACKET_remaining(&versionslist) != 0) { /* Trailing data? */ return SSL_R_LENGTH_MISMATCH; } if (best_vers > 0) { if (s->hello_retry_request != SSL_HRR_NONE) { /* * This is after a HelloRetryRequest so we better check that we * negotiated TLSv1.3 */ if (best_vers != TLS1_3_VERSION) return SSL_R_UNSUPPORTED_PROTOCOL; return 0; } check_for_downgrade(s, best_vers, dgrd); s->version = best_vers; ssl->method = best_method; if (!ssl_set_record_protocol_version(s, best_vers)) return ERR_R_INTERNAL_ERROR; return 0; } return SSL_R_UNSUPPORTED_PROTOCOL; } /* * If the supported versions extension isn't present, then the highest * version we can negotiate is TLSv1.2 */ if (ssl_version_cmp(s, client_version, TLS1_3_VERSION) >= 0) client_version = TLS1_2_VERSION; /* * No supported versions extension, so we just use the version supplied in * the ClientHello. */ for (vent = table; vent->version != 0; ++vent) { const SSL_METHOD *method; if (vent->smeth == NULL || ssl_version_cmp(s, client_version, vent->version) < 0) continue; method = vent->smeth(); if (ssl_method_error(s, method) == 0) { check_for_downgrade(s, vent->version, dgrd); s->version = vent->version; ssl->method = method; if (!ssl_set_record_protocol_version(s, s->version)) return ERR_R_INTERNAL_ERROR; return 0; } disabled = 1; } return disabled ? SSL_R_UNSUPPORTED_PROTOCOL : SSL_R_VERSION_TOO_LOW; } /* * ssl_choose_client_version - Choose client (D)TLS version. Called when the * server HELLO is received to select the final client protocol version and * the version specific method. * * @s: client SSL handle. * @version: The proposed version from the server's HELLO. * @extensions: The extensions received * * Returns 1 on success or 0 on error. */ int ssl_choose_client_version(SSL_CONNECTION *s, int version, RAW_EXTENSION *extensions) { const version_info *vent; const version_info *table; int ret, ver_min, ver_max, real_max, origv; SSL *ssl = SSL_CONNECTION_GET_SSL(s); origv = s->version; s->version = version; /* This will overwrite s->version if the extension is present */ if (!tls_parse_extension(s, TLSEXT_IDX_supported_versions, SSL_EXT_TLS1_2_SERVER_HELLO | SSL_EXT_TLS1_3_SERVER_HELLO, extensions, NULL, 0)) { s->version = origv; return 0; } if (s->hello_retry_request != SSL_HRR_NONE && s->version != TLS1_3_VERSION) { s->version = origv; SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION); return 0; } switch (ssl->method->version) { default: if (s->version != ssl->method->version) { s->version = origv; SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_WRONG_SSL_VERSION); return 0; } /* * If this SSL handle is not from a version flexible method we don't * (and never did) check min/max, FIPS or Suite B constraints. Hope * that's OK. It is up to the caller to not choose fixed protocol * versions they don't want. If not, then easy to fix, just return * ssl_method_error(s, s->method) */ if (!ssl_set_record_protocol_version(s, s->version)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; case TLS_ANY_VERSION: table = tls_version_table; break; case DTLS_ANY_VERSION: table = dtls_version_table; break; } ret = ssl_get_min_max_version(s, &ver_min, &ver_max, &real_max); if (ret != 0) { s->version = origv; SSLfatal(s, SSL_AD_PROTOCOL_VERSION, ret); return 0; } if (ssl_version_cmp(s, s->version, ver_min) < 0 || ssl_version_cmp(s, s->version, ver_max) > 0) { s->version = origv; SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL); return 0; } if ((s->mode & SSL_MODE_SEND_FALLBACK_SCSV) == 0) real_max = ver_max; /* Check for downgrades */ if (s->version == TLS1_2_VERSION && real_max > s->version) { if (memcmp(tls12downgrade, s->s3.server_random + SSL3_RANDOM_SIZE - sizeof(tls12downgrade), sizeof(tls12downgrade)) == 0) { s->version = origv; SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_INAPPROPRIATE_FALLBACK); return 0; } } else if (!SSL_CONNECTION_IS_DTLS(s) && s->version < TLS1_2_VERSION && real_max > s->version) { if (memcmp(tls11downgrade, s->s3.server_random + SSL3_RANDOM_SIZE - sizeof(tls11downgrade), sizeof(tls11downgrade)) == 0) { s->version = origv; SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_INAPPROPRIATE_FALLBACK); return 0; } } for (vent = table; vent->version != 0; ++vent) { if (vent->cmeth == NULL || s->version != vent->version) continue; ssl->method = vent->cmeth(); if (!ssl_set_record_protocol_version(s, s->version)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } s->version = origv; SSLfatal(s, SSL_AD_PROTOCOL_VERSION, SSL_R_UNSUPPORTED_PROTOCOL); return 0; } /* * ssl_get_min_max_version - get minimum and maximum protocol version * @s: The SSL connection * @min_version: The minimum supported version * @max_version: The maximum supported version * @real_max: The highest version below the lowest compile time version hole * where that hole lies above at least one run-time enabled * protocol. * * Work out what version we should be using for the initial ClientHello if the * version is initially (D)TLS_ANY_VERSION. We apply any explicit SSL_OP_NO_xxx * options, the MinProtocol and MaxProtocol configuration commands, any Suite B * constraints and any floor imposed by the security level here, * so we don't advertise the wrong protocol version to only reject the outcome later. * * Computing the right floor matters. If, e.g., TLS 1.0 and 1.2 are enabled, * TLS 1.1 is disabled, but the security level, Suite-B and/or MinProtocol * only allow TLS 1.2, we want to advertise TLS1.2, *not* TLS1. * * Returns 0 on success or an SSL error reason number on failure. On failure * min_version and max_version will also be set to 0. */ int ssl_get_min_max_version(const SSL_CONNECTION *s, int *min_version, int *max_version, int *real_max) { int version, tmp_real_max; int hole; const SSL_METHOD *method; const version_info *table; const version_info *vent; const SSL *ssl = SSL_CONNECTION_GET_SSL(s); switch (ssl->method->version) { default: /* * If this SSL handle is not from a version flexible method we don't * (and never did) check min/max FIPS or Suite B constraints. Hope * that's OK. It is up to the caller to not choose fixed protocol * versions they don't want. If not, then easy to fix, just return * ssl_method_error(s, s->method) */ *min_version = *max_version = s->version; /* * Providing a real_max only makes sense where we're using a version * flexible method. */ if (!ossl_assert(real_max == NULL)) return ERR_R_INTERNAL_ERROR; return 0; case TLS_ANY_VERSION: table = tls_version_table; break; case DTLS_ANY_VERSION: table = dtls_version_table; break; } /* * SSL_OP_NO_X disables all protocols above X *if* there are some protocols * below X enabled. This is required in order to maintain the "version * capability" vector contiguous. Any versions with a NULL client method * (protocol version client is disabled at compile-time) is also a "hole". * * Our initial state is hole == 1, version == 0. That is, versions above * the first version in the method table are disabled (a "hole" above * the valid protocol entries) and we don't have a selected version yet. * * Whenever "hole == 1", and we hit an enabled method, its version becomes * the selected version. We're no longer in a hole, so "hole" becomes 0. * * If "hole == 0" and we hit an enabled method, we support a contiguous * range of at least two methods. If we hit a disabled method, * then hole becomes true again, but nothing else changes yet, * because all the remaining methods may be disabled too. * If we again hit an enabled method after the new hole, it becomes * selected, as we start from scratch. */ *min_version = version = 0; hole = 1; if (real_max != NULL) *real_max = 0; tmp_real_max = 0; for (vent = table; vent->version != 0; ++vent) { /* * A table entry with a NULL client method is still a hole in the * "version capability" vector. */ if (vent->cmeth == NULL) { hole = 1; tmp_real_max = 0; continue; } method = vent->cmeth(); if (hole == 1 && tmp_real_max == 0) tmp_real_max = vent->version; if (ssl_method_error(s, method) != 0) { hole = 1; } else if (!hole) { *min_version = method->version; } else { if (real_max != NULL && tmp_real_max != 0) *real_max = tmp_real_max; version = method->version; *min_version = version; hole = 0; } } *max_version = version; /* Fail if everything is disabled */ if (version == 0) return SSL_R_NO_PROTOCOLS_AVAILABLE; return 0; } /* * ssl_set_client_hello_version - Work out what version we should be using for * the initial ClientHello.legacy_version field. * * @s: client SSL handle. * * Returns 0 on success or an SSL error reason number on failure. */ int ssl_set_client_hello_version(SSL_CONNECTION *s) { int ver_min, ver_max, ret; /* * In a renegotiation we always send the same client_version that we sent * last time, regardless of which version we eventually negotiated. */ if (!SSL_IS_FIRST_HANDSHAKE(s)) return 0; ret = ssl_get_min_max_version(s, &ver_min, &ver_max, NULL); if (ret != 0) return ret; s->version = ver_max; if (SSL_CONNECTION_IS_DTLS(s)) { if (ver_max == DTLS1_BAD_VER) { /* * Even though this is technically before version negotiation, * because we have asked for DTLS1_BAD_VER we will never negotiate * anything else, and this has impacts on the record layer for when * we read the ServerHello. So we need to tell the record layer * about this immediately. */ if (!ssl_set_record_protocol_version(s, ver_max)) return 0; } } else if (ver_max > TLS1_2_VERSION) { /* TLS1.3 always uses TLS1.2 in the legacy_version field */ ver_max = TLS1_2_VERSION; } s->client_version = ver_max; return 0; } /* * Checks a list of |groups| to determine if the |group_id| is in it. If it is * and |checkallow| is 1 then additionally check if the group is allowed to be * used. Returns 1 if the group is in the list (and allowed if |checkallow| is * 1) or 0 otherwise. */ int check_in_list(SSL_CONNECTION *s, uint16_t group_id, const uint16_t *groups, size_t num_groups, int checkallow) { size_t i; if (groups == NULL || num_groups == 0) return 0; for (i = 0; i < num_groups; i++) { uint16_t group = groups[i]; if (group_id == group && (!checkallow || tls_group_allowed(s, group, SSL_SECOP_CURVE_CHECK))) { return 1; } } return 0; } /* Replace ClientHello1 in the transcript hash with a synthetic message */ int create_synthetic_message_hash(SSL_CONNECTION *s, const unsigned char *hashval, size_t hashlen, const unsigned char *hrr, size_t hrrlen) { unsigned char hashvaltmp[EVP_MAX_MD_SIZE]; unsigned char msghdr[SSL3_HM_HEADER_LENGTH]; memset(msghdr, 0, sizeof(msghdr)); if (hashval == NULL) { hashval = hashvaltmp; hashlen = 0; /* Get the hash of the initial ClientHello */ if (!ssl3_digest_cached_records(s, 0) || !ssl_handshake_hash(s, hashvaltmp, sizeof(hashvaltmp), &hashlen)) { /* SSLfatal() already called */ return 0; } } /* Reinitialise the transcript hash */ if (!ssl3_init_finished_mac(s)) { /* SSLfatal() already called */ return 0; } /* Inject the synthetic message_hash message */ msghdr[0] = SSL3_MT_MESSAGE_HASH; msghdr[SSL3_HM_HEADER_LENGTH - 1] = (unsigned char)hashlen; if (!ssl3_finish_mac(s, msghdr, SSL3_HM_HEADER_LENGTH) || !ssl3_finish_mac(s, hashval, hashlen)) { /* SSLfatal() already called */ return 0; } /* * Now re-inject the HRR and current message if appropriate (we just deleted * it when we reinitialised the transcript hash above). Only necessary after * receiving a ClientHello2 with a cookie. */ if (hrr != NULL && (!ssl3_finish_mac(s, hrr, hrrlen) || !ssl3_finish_mac(s, (unsigned char *)s->init_buf->data, s->s3.tmp.message_size + SSL3_HM_HEADER_LENGTH))) { /* SSLfatal() already called */ return 0; } return 1; } static int ca_dn_cmp(const X509_NAME *const *a, const X509_NAME *const *b) { return X509_NAME_cmp(*a, *b); } int parse_ca_names(SSL_CONNECTION *s, PACKET *pkt) { STACK_OF(X509_NAME) *ca_sk = sk_X509_NAME_new(ca_dn_cmp); X509_NAME *xn = NULL; PACKET cadns; if (ca_sk == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); goto err; } /* get the CA RDNs */ if (!PACKET_get_length_prefixed_2(pkt, &cadns)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } while (PACKET_remaining(&cadns)) { const unsigned char *namestart, *namebytes; unsigned int name_len; if (!PACKET_get_net_2(&cadns, &name_len) || !PACKET_get_bytes(&cadns, &namebytes, name_len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_LENGTH_MISMATCH); goto err; } namestart = namebytes; if ((xn = d2i_X509_NAME(NULL, &namebytes, name_len)) == NULL) { SSLfatal(s, SSL_AD_DECODE_ERROR, ERR_R_ASN1_LIB); goto err; } if (namebytes != (namestart + name_len)) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_CA_DN_LENGTH_MISMATCH); goto err; } if (!sk_X509_NAME_push(ca_sk, xn)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); goto err; } xn = NULL; } sk_X509_NAME_pop_free(s->s3.tmp.peer_ca_names, X509_NAME_free); s->s3.tmp.peer_ca_names = ca_sk; return 1; err: sk_X509_NAME_pop_free(ca_sk, X509_NAME_free); X509_NAME_free(xn); return 0; } const STACK_OF(X509_NAME) *get_ca_names(SSL_CONNECTION *s) { const STACK_OF(X509_NAME) *ca_sk = NULL; SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (s->server) { ca_sk = SSL_get_client_CA_list(ssl); if (ca_sk != NULL && sk_X509_NAME_num(ca_sk) == 0) ca_sk = NULL; } if (ca_sk == NULL) ca_sk = SSL_get0_CA_list(ssl); return ca_sk; } int construct_ca_names(SSL_CONNECTION *s, const STACK_OF(X509_NAME) *ca_sk, WPACKET *pkt) { /* Start sub-packet for client CA list */ if (!WPACKET_start_sub_packet_u16(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if ((ca_sk != NULL) && !(s->options & SSL_OP_DISABLE_TLSEXT_CA_NAMES)) { int i; for (i = 0; i < sk_X509_NAME_num(ca_sk); i++) { unsigned char *namebytes; X509_NAME *name = sk_X509_NAME_value(ca_sk, i); int namelen; if (name == NULL || (namelen = i2d_X509_NAME(name, NULL)) < 0 || !WPACKET_sub_allocate_bytes_u16(pkt, namelen, &namebytes) || i2d_X509_NAME(name, &namebytes) != namelen) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } } } if (!WPACKET_close(pkt)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } /* Create a buffer containing data to be signed for server key exchange */ size_t construct_key_exchange_tbs(SSL_CONNECTION *s, unsigned char **ptbs, const void *param, size_t paramlen) { size_t tbslen = 2 * SSL3_RANDOM_SIZE + paramlen; unsigned char *tbs = OPENSSL_malloc(tbslen); if (tbs == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); return 0; } memcpy(tbs, s->s3.client_random, SSL3_RANDOM_SIZE); memcpy(tbs + SSL3_RANDOM_SIZE, s->s3.server_random, SSL3_RANDOM_SIZE); memcpy(tbs + SSL3_RANDOM_SIZE * 2, param, paramlen); *ptbs = tbs; return tbslen; } /* * Saves the current handshake digest for Post-Handshake Auth, * Done after ClientFinished is processed, done exactly once */ int tls13_save_handshake_digest_for_pha(SSL_CONNECTION *s) { if (s->pha_dgst == NULL) { if (!ssl3_digest_cached_records(s, 1)) /* SSLfatal() already called */ return 0; s->pha_dgst = EVP_MD_CTX_new(); if (s->pha_dgst == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if (!EVP_MD_CTX_copy_ex(s->pha_dgst, s->s3.handshake_dgst)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); EVP_MD_CTX_free(s->pha_dgst); s->pha_dgst = NULL; return 0; } } return 1; } /* * Restores the Post-Handshake Auth handshake digest * Done just before sending/processing the Cert Request */ int tls13_restore_handshake_digest_for_pha(SSL_CONNECTION *s) { if (s->pha_dgst == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } if (!EVP_MD_CTX_copy_ex(s->s3.handshake_dgst, s->pha_dgst)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } #ifndef OPENSSL_NO_COMP_ALG MSG_PROCESS_RETURN tls13_process_compressed_certificate(SSL_CONNECTION *sc, PACKET *pkt, PACKET *tmppkt, BUF_MEM *buf) { MSG_PROCESS_RETURN ret = MSG_PROCESS_ERROR; int comp_alg; COMP_METHOD *method = NULL; COMP_CTX *comp = NULL; size_t expected_length; size_t comp_length; int i; int found = 0; if (buf == NULL) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (!PACKET_get_net_2(pkt, (unsigned int*)&comp_alg)) { SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, ERR_R_INTERNAL_ERROR); goto err; } /* If we have a prefs list, make sure the algorithm is in it */ if (sc->cert_comp_prefs[0] != TLSEXT_comp_cert_none) { for (i = 0; sc->cert_comp_prefs[i] != TLSEXT_comp_cert_none; i++) { if (sc->cert_comp_prefs[i] == comp_alg) { found = 1; break; } } if (!found) { SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM); goto err; } } if (!ossl_comp_has_alg(comp_alg)) { SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM); goto err; } switch (comp_alg) { case TLSEXT_comp_cert_zlib: method = COMP_zlib_oneshot(); break; case TLSEXT_comp_cert_brotli: method = COMP_brotli_oneshot(); break; case TLSEXT_comp_cert_zstd: method = COMP_zstd_oneshot(); break; default: SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_COMPRESSION_ALGORITHM); goto err; } if ((comp = COMP_CTX_new(method)) == NULL || !PACKET_get_net_3_len(pkt, &expected_length) || !PACKET_get_net_3_len(pkt, &comp_length) || PACKET_remaining(pkt) != comp_length || !BUF_MEM_grow(buf, expected_length) || !PACKET_buf_init(tmppkt, (unsigned char *)buf->data, expected_length) || COMP_expand_block(comp, (unsigned char *)buf->data, expected_length, (unsigned char*)PACKET_data(pkt), comp_length) != (int)expected_length) { SSLfatal(sc, SSL_AD_BAD_CERTIFICATE, SSL_R_BAD_DECOMPRESSION); goto err; } ret = MSG_PROCESS_CONTINUE_PROCESSING; err: COMP_CTX_free(comp); return ret; } #endif