/* * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * For TLS v1.0 and TLS v1.1 the TLS PRF algorithm is given by: * * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR * P_SHA-1(S2, label + seed) * * where P_MD5 and P_SHA-1 are defined by P_, below, and S1 and S2 are * two halves of the secret (with the possibility of one shared byte, in the * case where the length of the original secret is odd). S1 is taken from the * first half of the secret, S2 from the second half. * * For TLS v1.2 the TLS PRF algorithm is given by: * * PRF(secret, label, seed) = P_(secret, label + seed) * * where hash is SHA-256 for all cipher suites defined in RFC 5246 as well as * those published prior to TLS v1.2 while the TLS v1.2 protocol is in effect, * unless defined otherwise by the cipher suite. * * P_ is an expansion function that uses a single hash function to expand * a secret and seed into an arbitrary quantity of output: * * P_(secret, seed) = HMAC_(secret, A(1) + seed) + * HMAC_(secret, A(2) + seed) + * HMAC_(secret, A(3) + seed) + ... * * where + indicates concatenation. P_ can be iterated as many times as * is necessary to produce the required quantity of data. * * A(i) is defined as: * A(0) = seed * A(i) = HMAC_(secret, A(i-1)) */ /* * Low level APIs (such as DH) are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/numbers.h" #include "crypto/evp.h" #include "prov/provider_ctx.h" #include "prov/providercommon.h" #include "prov/implementations.h" #include "prov/provider_util.h" #include "prov/securitycheck.h" #include "internal/e_os.h" #include "internal/safe_math.h" OSSL_SAFE_MATH_UNSIGNED(size_t, size_t) static OSSL_FUNC_kdf_newctx_fn kdf_tls1_prf_new; static OSSL_FUNC_kdf_dupctx_fn kdf_tls1_prf_dup; static OSSL_FUNC_kdf_freectx_fn kdf_tls1_prf_free; static OSSL_FUNC_kdf_reset_fn kdf_tls1_prf_reset; static OSSL_FUNC_kdf_derive_fn kdf_tls1_prf_derive; static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_tls1_prf_settable_ctx_params; static OSSL_FUNC_kdf_set_ctx_params_fn kdf_tls1_prf_set_ctx_params; static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_tls1_prf_gettable_ctx_params; static OSSL_FUNC_kdf_get_ctx_params_fn kdf_tls1_prf_get_ctx_params; static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen); #define TLS_MD_MASTER_SECRET_CONST "\x6d\x61\x73\x74\x65\x72\x20\x73\x65\x63\x72\x65\x74" #define TLS_MD_MASTER_SECRET_CONST_SIZE 13 /* TLS KDF kdf context structure */ typedef struct { void *provctx; /* MAC context for the main digest */ EVP_MAC_CTX *P_hash; /* MAC context for SHA1 for the MD5/SHA-1 combined PRF */ EVP_MAC_CTX *P_sha1; /* Secret value to use for PRF */ unsigned char *sec; size_t seclen; /* Concatenated seed data */ unsigned char *seed; size_t seedlen; OSSL_FIPS_IND_DECLARE } TLS1_PRF; static void *kdf_tls1_prf_new(void *provctx) { TLS1_PRF *ctx; if (!ossl_prov_is_running()) return NULL; if ((ctx = OPENSSL_zalloc(sizeof(*ctx))) != NULL) { ctx->provctx = provctx; OSSL_FIPS_IND_INIT(ctx) } return ctx; } static void kdf_tls1_prf_free(void *vctx) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; if (ctx != NULL) { kdf_tls1_prf_reset(ctx); OPENSSL_free(ctx); } } static void kdf_tls1_prf_reset(void *vctx) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; void *provctx = ctx->provctx; EVP_MAC_CTX_free(ctx->P_hash); EVP_MAC_CTX_free(ctx->P_sha1); OPENSSL_clear_free(ctx->sec, ctx->seclen); OPENSSL_clear_free(ctx->seed, ctx->seedlen); memset(ctx, 0, sizeof(*ctx)); ctx->provctx = provctx; } static void *kdf_tls1_prf_dup(void *vctx) { const TLS1_PRF *src = (const TLS1_PRF *)vctx; TLS1_PRF *dest; dest = kdf_tls1_prf_new(src->provctx); if (dest != NULL) { if (src->P_hash != NULL && (dest->P_hash = EVP_MAC_CTX_dup(src->P_hash)) == NULL) goto err; if (src->P_sha1 != NULL && (dest->P_sha1 = EVP_MAC_CTX_dup(src->P_sha1)) == NULL) goto err; if (!ossl_prov_memdup(src->sec, src->seclen, &dest->sec, &dest->seclen)) goto err; if (!ossl_prov_memdup(src->seed, src->seedlen, &dest->seed, &dest->seedlen)) goto err; OSSL_FIPS_IND_COPY(dest, src) } return dest; err: kdf_tls1_prf_free(dest); return NULL; } #ifdef FIPS_MODULE static int fips_ems_check_passed(TLS1_PRF *ctx) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); /* * Check that TLS is using EMS. * * The seed buffer is prepended with a label. * If EMS mode is enforced then the label "master secret" is not allowed, * We do the check this way since the PRF is used for other purposes, as well * as "extended master secret". */ int ems_approved = (ctx->seedlen < TLS_MD_MASTER_SECRET_CONST_SIZE || memcmp(ctx->seed, TLS_MD_MASTER_SECRET_CONST, TLS_MD_MASTER_SECRET_CONST_SIZE) != 0); if (!ems_approved) { if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE0, libctx, "TLS_PRF", "EMS", ossl_fips_config_tls1_prf_ems_check)) { ERR_raise(ERR_LIB_PROV, PROV_R_EMS_NOT_ENABLED); return 0; } } return 1; } static int fips_digest_check_passed(TLS1_PRF *ctx, const EVP_MD *md) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); /* * Perform digest check * * According to NIST SP 800-135r1 section 5.2, the valid hash functions are * specified in FIPS 180-3. ACVP also only lists the same set of hash * functions. */ int digest_unapproved = !EVP_MD_is_a(md, SN_sha256) && !EVP_MD_is_a(md, SN_sha384) && !EVP_MD_is_a(md, SN_sha512); if (digest_unapproved) { if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE1, libctx, "TLS_PRF", "Digest", ossl_fips_config_tls1_prf_digest_check)) { ERR_raise(ERR_LIB_PROV, PROV_R_DIGEST_NOT_ALLOWED); return 0; } } return 1; } static int fips_key_check_passed(TLS1_PRF *ctx) { OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); int key_approved = ossl_kdf_check_key_size(ctx->seclen); if (!key_approved) { if (!OSSL_FIPS_IND_ON_UNAPPROVED(ctx, OSSL_FIPS_IND_SETTABLE2, libctx, "TLS_PRF", "Key size", ossl_fips_config_tls1_prf_key_check)) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); return 0; } } return 1; } #endif static int kdf_tls1_prf_derive(void *vctx, unsigned char *key, size_t keylen, const OSSL_PARAM params[]) { TLS1_PRF *ctx = (TLS1_PRF *)vctx; if (!ossl_prov_is_running() || !kdf_tls1_prf_set_ctx_params(ctx, params)) return 0; if (ctx->P_hash == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_MESSAGE_DIGEST); return 0; } if (ctx->sec == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SECRET); return 0; } if (ctx->seedlen == 0) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SEED); return 0; } if (keylen == 0) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); return 0; } #ifdef FIPS_MODULE if (!fips_ems_check_passed(ctx)) return 0; #endif return tls1_prf_alg(ctx->P_hash, ctx->P_sha1, ctx->sec, ctx->seclen, ctx->seed, ctx->seedlen, key, keylen); } static int kdf_tls1_prf_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; TLS1_PRF *ctx = vctx; OSSL_LIB_CTX *libctx = PROV_LIBCTX_OF(ctx->provctx); if (ossl_param_is_empty(params)) return 1; if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE0, params, OSSL_KDF_PARAM_FIPS_EMS_CHECK)) return 0; if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE1, params, OSSL_KDF_PARAM_FIPS_DIGEST_CHECK)) return 0; if (!OSSL_FIPS_IND_SET_CTX_PARAM(ctx, OSSL_FIPS_IND_SETTABLE2, params, OSSL_KDF_PARAM_FIPS_KEY_CHECK)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_DIGEST)) != NULL) { PROV_DIGEST digest; const EVP_MD *md = NULL; if (OPENSSL_strcasecmp(p->data, SN_md5_sha1) == 0) { if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, OSSL_MAC_NAME_HMAC, NULL, SN_md5, libctx) || !ossl_prov_macctx_load_from_params(&ctx->P_sha1, params, OSSL_MAC_NAME_HMAC, NULL, SN_sha1, libctx)) return 0; } else { EVP_MAC_CTX_free(ctx->P_sha1); if (!ossl_prov_macctx_load_from_params(&ctx->P_hash, params, OSSL_MAC_NAME_HMAC, NULL, NULL, libctx)) return 0; } memset(&digest, 0, sizeof(digest)); if (!ossl_prov_digest_load_from_params(&digest, params, libctx)) return 0; md = ossl_prov_digest_md(&digest); if (EVP_MD_xof(md)) { ERR_raise(ERR_LIB_PROV, PROV_R_XOF_DIGESTS_NOT_ALLOWED); ossl_prov_digest_reset(&digest); return 0; } #ifdef FIPS_MODULE if (!fips_digest_check_passed(ctx, md)) { ossl_prov_digest_reset(&digest); return 0; } #endif ossl_prov_digest_reset(&digest); } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SECRET)) != NULL) { OPENSSL_clear_free(ctx->sec, ctx->seclen); ctx->sec = NULL; if (!OSSL_PARAM_get_octet_string(p, (void **)&ctx->sec, 0, &ctx->seclen)) return 0; #ifdef FIPS_MODULE if (!fips_key_check_passed(ctx)) return 0; #endif } /* The seed fields concatenate, so process them all */ if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SEED)) != NULL) { for (; p != NULL; p = OSSL_PARAM_locate_const(p + 1, OSSL_KDF_PARAM_SEED)) { if (p->data_size != 0 && p->data != NULL) { const void *val = NULL; size_t sz = 0; unsigned char *seed; size_t seedlen; int err = 0; if (!OSSL_PARAM_get_octet_string_ptr(p, &val, &sz)) return 0; seedlen = safe_add_size_t(ctx->seedlen, sz, &err); if (err) return 0; seed = OPENSSL_clear_realloc(ctx->seed, ctx->seedlen, seedlen); if (!seed) return 0; ctx->seed = seed; if (ossl_assert(sz != 0)) memcpy(ctx->seed + ctx->seedlen, val, sz); ctx->seedlen = seedlen; } } } return 1; } static const OSSL_PARAM *kdf_tls1_prf_settable_ctx_params( ossl_unused void *ctx, ossl_unused void *provctx) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_DIGEST, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SECRET, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SEED, NULL, 0), OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_EMS_CHECK) OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_DIGEST_CHECK) OSSL_FIPS_IND_SETTABLE_CTX_PARAM(OSSL_KDF_PARAM_FIPS_KEY_CHECK) OSSL_PARAM_END }; return known_settable_ctx_params; } static int kdf_tls1_prf_get_ctx_params(void *vctx, OSSL_PARAM params[]) { OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) { if (!OSSL_PARAM_set_size_t(p, SIZE_MAX)) return 0; } if (!OSSL_FIPS_IND_GET_CTX_PARAM(((TLS1_PRF *)vctx), params)) return 0; return 1; } static const OSSL_PARAM *kdf_tls1_prf_gettable_ctx_params( ossl_unused void *ctx, ossl_unused void *provctx) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_FIPS_IND_GETTABLE_CTX_PARAM() OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH ossl_kdf_tls1_prf_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_tls1_prf_new }, { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_tls1_prf_dup }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_tls1_prf_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_tls1_prf_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_tls1_prf_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_tls1_prf_get_ctx_params }, OSSL_DISPATCH_END }; /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * P_ is an expansion function that uses a single hash function to expand * a secret and seed into an arbitrary quantity of output: * * P_(secret, seed) = HMAC_(secret, A(1) + seed) + * HMAC_(secret, A(2) + seed) + * HMAC_(secret, A(3) + seed) + ... * * where + indicates concatenation. P_ can be iterated as many times as * is necessary to produce the required quantity of data. * * A(i) is defined as: * A(0) = seed * A(i) = HMAC_(secret, A(i-1)) */ static int tls1_prf_P_hash(EVP_MAC_CTX *ctx_init, const unsigned char *sec, size_t sec_len, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { size_t chunk; EVP_MAC_CTX *ctx = NULL, *ctx_Ai = NULL; unsigned char Ai[EVP_MAX_MD_SIZE]; size_t Ai_len; int ret = 0; if (!EVP_MAC_init(ctx_init, sec, sec_len, NULL)) goto err; chunk = EVP_MAC_CTX_get_mac_size(ctx_init); if (chunk == 0) goto err; /* A(0) = seed */ ctx_Ai = EVP_MAC_CTX_dup(ctx_init); if (ctx_Ai == NULL) goto err; if (seed != NULL && !EVP_MAC_update(ctx_Ai, seed, seed_len)) goto err; for (;;) { /* calc: A(i) = HMAC_(secret, A(i-1)) */ if (!EVP_MAC_final(ctx_Ai, Ai, &Ai_len, sizeof(Ai))) goto err; EVP_MAC_CTX_free(ctx_Ai); ctx_Ai = NULL; /* calc next chunk: HMAC_(secret, A(i) + seed) */ ctx = EVP_MAC_CTX_dup(ctx_init); if (ctx == NULL) goto err; if (!EVP_MAC_update(ctx, Ai, Ai_len)) goto err; /* save state for calculating next A(i) value */ if (olen > chunk) { ctx_Ai = EVP_MAC_CTX_dup(ctx); if (ctx_Ai == NULL) goto err; } if (seed != NULL && !EVP_MAC_update(ctx, seed, seed_len)) goto err; if (olen <= chunk) { /* last chunk - use Ai as temp bounce buffer */ if (!EVP_MAC_final(ctx, Ai, &Ai_len, sizeof(Ai))) goto err; memcpy(out, Ai, olen); break; } if (!EVP_MAC_final(ctx, out, NULL, olen)) goto err; EVP_MAC_CTX_free(ctx); ctx = NULL; out += chunk; olen -= chunk; } ret = 1; err: EVP_MAC_CTX_free(ctx); EVP_MAC_CTX_free(ctx_Ai); OPENSSL_cleanse(Ai, sizeof(Ai)); return ret; } /* * Refer to "The TLS Protocol Version 1.0" Section 5 * (https://tools.ietf.org/html/rfc2246#section-5) and * "The Transport Layer Security (TLS) Protocol Version 1.2" Section 5 * (https://tools.ietf.org/html/rfc5246#section-5). * * For TLS v1.0 and TLS v1.1: * * PRF(secret, label, seed) = P_MD5(S1, label + seed) XOR * P_SHA-1(S2, label + seed) * * S1 is taken from the first half of the secret, S2 from the second half. * * L_S = length in bytes of secret; * L_S1 = L_S2 = ceil(L_S / 2); * * For TLS v1.2: * * PRF(secret, label, seed) = P_(secret, label + seed) */ static int tls1_prf_alg(EVP_MAC_CTX *mdctx, EVP_MAC_CTX *sha1ctx, const unsigned char *sec, size_t slen, const unsigned char *seed, size_t seed_len, unsigned char *out, size_t olen) { if (sha1ctx != NULL) { /* TLS v1.0 and TLS v1.1 */ size_t i; unsigned char *tmp; /* calc: L_S1 = L_S2 = ceil(L_S / 2) */ size_t L_S1 = (slen + 1) / 2; size_t L_S2 = L_S1; if (!tls1_prf_P_hash(mdctx, sec, L_S1, seed, seed_len, out, olen)) return 0; if ((tmp = OPENSSL_malloc(olen)) == NULL) return 0; if (!tls1_prf_P_hash(sha1ctx, sec + slen - L_S2, L_S2, seed, seed_len, tmp, olen)) { OPENSSL_clear_free(tmp, olen); return 0; } for (i = 0; i < olen; i++) out[i] ^= tmp[i]; OPENSSL_clear_free(tmp, olen); return 1; } /* TLS v1.2 */ if (!tls1_prf_P_hash(mdctx, sec, slen, seed, seed_len, out, olen)) return 0; return 1; }