/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef __SOFTFP__ #define ARM_ABI_INFO " ABI:softfp" #else #define ARM_ABI_INFO " ABI:hardfp" #endif SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void) { #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) return "ARMv7" SLJIT_CPUINFO ARM_ABI_INFO; #elif (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) return "ARMv5" SLJIT_CPUINFO ARM_ABI_INFO; #else #error "Internal error: Unknown ARM architecture" #endif } /* Last register + 1. */ #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2) #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3) #define TMP_PC (SLJIT_NUMBER_OF_REGISTERS + 4) #define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) #define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2) /* In ARM instruction words. Cache lines are usually 32 byte aligned. */ #define CONST_POOL_ALIGNMENT 8 #define CONST_POOL_EMPTY 0xffffffff #define ALIGN_INSTRUCTION(ptr) \ (sljit_uw*)(((sljit_uw)(ptr) + (CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1) & ~((CONST_POOL_ALIGNMENT * sizeof(sljit_uw)) - 1)) #define MAX_DIFFERENCE(max_diff) \ (((max_diff) / (sljit_s32)sizeof(sljit_uw)) - (CONST_POOL_ALIGNMENT - 1)) /* See sljit_emit_enter and sljit_emit_op0 if you want to change them. */ static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = { 0, 0, 1, 2, 3, 11, 10, 9, 8, 7, 6, 5, 4, 13, 12, 14, 15 }; static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = { 0, 0, 1, 2, 3, 4, 5, 6, 7 }; #define RM(rm) (reg_map[rm]) #define RD(rd) (reg_map[rd] << 12) #define RN(rn) (reg_map[rn] << 16) /* --------------------------------------------------------------------- */ /* Instrucion forms */ /* --------------------------------------------------------------------- */ /* The instruction includes the AL condition. INST_NAME - CONDITIONAL remove this flag. */ #define COND_MASK 0xf0000000 #define CONDITIONAL 0xe0000000 #define PUSH_POOL 0xff000000 #define ADC 0xe0a00000 #define ADD 0xe0800000 #define AND 0xe0000000 #define B 0xea000000 #define BIC 0xe1c00000 #define BL 0xeb000000 #define BLX 0xe12fff30 #define BX 0xe12fff10 #define CLZ 0xe16f0f10 #define CMN 0xe1600000 #define CMP 0xe1400000 #define BKPT 0xe1200070 #define EOR 0xe0200000 #define MOV 0xe1a00000 #define MUL 0xe0000090 #define MVN 0xe1e00000 #define NOP 0xe1a00000 #define ORR 0xe1800000 #define PUSH 0xe92d0000 #define POP 0xe8bd0000 #define RSB 0xe0600000 #define RSC 0xe0e00000 #define SBC 0xe0c00000 #define SMULL 0xe0c00090 #define SUB 0xe0400000 #define UMULL 0xe0800090 #define VABS_F32 0xeeb00ac0 #define VADD_F32 0xee300a00 #define VCMP_F32 0xeeb40a40 #define VCVT_F32_S32 0xeeb80ac0 #define VCVT_F64_F32 0xeeb70ac0 #define VCVT_S32_F32 0xeebd0ac0 #define VDIV_F32 0xee800a00 #define VMOV_F32 0xeeb00a40 #define VMOV 0xee000a10 #define VMOV2 0xec400a10 #define VMRS 0xeef1fa10 #define VMUL_F32 0xee200a00 #define VNEG_F32 0xeeb10a40 #define VSTR_F32 0xed000a00 #define VSUB_F32 0xee300a40 #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) /* Arm v7 specific instructions. */ #define MOVW 0xe3000000 #define MOVT 0xe3400000 #define SXTB 0xe6af0070 #define SXTH 0xe6bf0070 #define UXTB 0xe6ef0070 #define UXTH 0xe6ff0070 #endif #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) static sljit_s32 push_cpool(struct sljit_compiler *compiler) { /* Pushing the constant pool into the instruction stream. */ sljit_uw* inst; sljit_uw* cpool_ptr; sljit_uw* cpool_end; sljit_s32 i; /* The label could point the address after the constant pool. */ if (compiler->last_label && compiler->last_label->size == compiler->size) compiler->last_label->size += compiler->cpool_fill + (CONST_POOL_ALIGNMENT - 1) + 1; SLJIT_ASSERT(compiler->cpool_fill > 0 && compiler->cpool_fill <= CPOOL_SIZE); inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = 0xff000000 | compiler->cpool_fill; for (i = 0; i < CONST_POOL_ALIGNMENT - 1; i++) { inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = 0; } cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; while (cpool_ptr < cpool_end) { inst = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!inst); compiler->size++; *inst = *cpool_ptr++; } compiler->cpool_diff = CONST_POOL_EMPTY; compiler->cpool_fill = 0; return SLJIT_SUCCESS; } static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_uw inst) { sljit_uw* ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static sljit_s32 push_inst_with_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal) { sljit_uw* ptr; sljit_uw cpool_index = CPOOL_SIZE; sljit_uw* cpool_ptr; sljit_uw* cpool_end; sljit_u8* cpool_unique_ptr; if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092))) FAIL_IF(push_cpool(compiler)); else if (compiler->cpool_fill > 0) { cpool_ptr = compiler->cpool; cpool_end = cpool_ptr + compiler->cpool_fill; cpool_unique_ptr = compiler->cpool_unique; do { if ((*cpool_ptr == literal) && !(*cpool_unique_ptr)) { cpool_index = cpool_ptr - compiler->cpool; break; } cpool_ptr++; cpool_unique_ptr++; } while (cpool_ptr < cpool_end); } if (cpool_index == CPOOL_SIZE) { /* Must allocate a new entry in the literal pool. */ if (compiler->cpool_fill < CPOOL_SIZE) { cpool_index = compiler->cpool_fill; compiler->cpool_fill++; } else { FAIL_IF(push_cpool(compiler)); cpool_index = 0; compiler->cpool_fill = 1; } } SLJIT_ASSERT((inst & 0xfff) == 0); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | cpool_index; compiler->cpool[cpool_index] = literal; compiler->cpool_unique[cpool_index] = 0; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static sljit_s32 push_inst_with_unique_literal(struct sljit_compiler *compiler, sljit_uw inst, sljit_uw literal) { sljit_uw* ptr; if (SLJIT_UNLIKELY((compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4092)) || compiler->cpool_fill >= CPOOL_SIZE)) FAIL_IF(push_cpool(compiler)); SLJIT_ASSERT(compiler->cpool_fill < CPOOL_SIZE && (inst & 0xfff) == 0); ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst | compiler->cpool_fill; compiler->cpool[compiler->cpool_fill] = literal; compiler->cpool_unique[compiler->cpool_fill] = 1; compiler->cpool_fill++; if (compiler->cpool_diff == CONST_POOL_EMPTY) compiler->cpool_diff = compiler->size; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 prepare_blx(struct sljit_compiler *compiler) { /* Place for at least two instruction (doesn't matter whether the first has a literal). */ if (SLJIT_UNLIKELY(compiler->cpool_diff != CONST_POOL_EMPTY && compiler->size - compiler->cpool_diff >= MAX_DIFFERENCE(4088))) return push_cpool(compiler); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_blx(struct sljit_compiler *compiler) { /* Must follow tightly the previous instruction (to be able to convert it to bl instruction). */ SLJIT_ASSERT(compiler->cpool_diff == CONST_POOL_EMPTY || compiler->size - compiler->cpool_diff < MAX_DIFFERENCE(4092)); SLJIT_ASSERT(reg_map[TMP_REG1] != 14); return push_inst(compiler, BLX | RM(TMP_REG1)); } static sljit_uw patch_pc_relative_loads(sljit_uw *last_pc_patch, sljit_uw *code_ptr, sljit_uw* const_pool, sljit_uw cpool_size) { sljit_uw diff; sljit_uw ind; sljit_uw counter = 0; sljit_uw* clear_const_pool = const_pool; sljit_uw* clear_const_pool_end = const_pool + cpool_size; SLJIT_ASSERT(const_pool - code_ptr <= CONST_POOL_ALIGNMENT); /* Set unused flag for all literals in the constant pool. I.e.: unused literals can belong to branches, which can be encoded as B or BL. We can "compress" the constant pool by discarding these literals. */ while (clear_const_pool < clear_const_pool_end) *clear_const_pool++ = (sljit_uw)(-1); while (last_pc_patch < code_ptr) { /* Data transfer instruction with Rn == r15. */ if ((*last_pc_patch & 0x0c0f0000) == 0x040f0000) { diff = const_pool - last_pc_patch; ind = (*last_pc_patch) & 0xfff; /* Must be a load instruction with immediate offset. */ SLJIT_ASSERT(ind < cpool_size && !(*last_pc_patch & (1 << 25)) && (*last_pc_patch & (1 << 20))); if ((sljit_s32)const_pool[ind] < 0) { const_pool[ind] = counter; ind = counter; counter++; } else ind = const_pool[ind]; SLJIT_ASSERT(diff >= 1); if (diff >= 2 || ind > 0) { diff = (diff + ind - 2) << 2; SLJIT_ASSERT(diff <= 0xfff); *last_pc_patch = (*last_pc_patch & ~0xfff) | diff; } else *last_pc_patch = (*last_pc_patch & ~(0xfff | (1 << 23))) | 0x004; } last_pc_patch++; } return counter; } /* In some rare ocasions we may need future patches. The probability is close to 0 in practice. */ struct future_patch { struct future_patch* next; sljit_s32 index; sljit_s32 value; }; static sljit_s32 resolve_const_pool_index(struct sljit_compiler *compiler, struct future_patch **first_patch, sljit_uw cpool_current_index, sljit_uw *cpool_start_address, sljit_uw *buf_ptr) { sljit_s32 value; struct future_patch *curr_patch, *prev_patch; SLJIT_UNUSED_ARG(compiler); /* Using the values generated by patch_pc_relative_loads. */ if (!*first_patch) value = (sljit_s32)cpool_start_address[cpool_current_index]; else { curr_patch = *first_patch; prev_patch = NULL; while (1) { if (!curr_patch) { value = (sljit_s32)cpool_start_address[cpool_current_index]; break; } if ((sljit_uw)curr_patch->index == cpool_current_index) { value = curr_patch->value; if (prev_patch) prev_patch->next = curr_patch->next; else *first_patch = curr_patch->next; SLJIT_FREE(curr_patch, compiler->allocator_data); break; } prev_patch = curr_patch; curr_patch = curr_patch->next; } } if (value >= 0) { if ((sljit_uw)value > cpool_current_index) { curr_patch = (struct future_patch*)SLJIT_MALLOC(sizeof(struct future_patch), compiler->allocator_data); if (!curr_patch) { while (*first_patch) { curr_patch = *first_patch; *first_patch = (*first_patch)->next; SLJIT_FREE(curr_patch, compiler->allocator_data); } return SLJIT_ERR_ALLOC_FAILED; } curr_patch->next = *first_patch; curr_patch->index = value; curr_patch->value = cpool_start_address[value]; *first_patch = curr_patch; } cpool_start_address[value] = *buf_ptr; } return SLJIT_SUCCESS; } #else static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_uw inst) { sljit_uw* ptr; ptr = (sljit_uw*)ensure_buf(compiler, sizeof(sljit_uw)); FAIL_IF(!ptr); compiler->size++; *ptr = inst; return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 emit_imm(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff))); return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff)); } #endif static SLJIT_INLINE sljit_s32 detect_jump_type(struct sljit_jump *jump, sljit_uw *code_ptr, sljit_uw *code, sljit_sw executable_offset) { sljit_sw diff; if (jump->flags & SLJIT_REWRITABLE_JUMP) return 0; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (jump->flags & IS_BL) code_ptr--; if (jump->flags & JUMP_ADDR) diff = ((sljit_sw)jump->u.target - (sljit_sw)(code_ptr + 2) - executable_offset); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)(code_ptr + 2)); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; if (jump->flags & IS_BL) { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (BL - CONDITIONAL) | (*(code_ptr + 1) & COND_MASK); jump->flags |= PATCH_B; return 1; } } else { if (diff <= 0x01ffffff && diff >= -0x02000000) { *code_ptr = (B - CONDITIONAL) | (*code_ptr & COND_MASK); jump->flags |= PATCH_B; } } #else if (jump->flags & JUMP_ADDR) diff = ((sljit_sw)jump->u.target - (sljit_sw)code_ptr - executable_offset); else { SLJIT_ASSERT(jump->flags & JUMP_LABEL); diff = ((sljit_sw)(code + jump->u.label->size) - (sljit_sw)code_ptr); } /* Branch to Thumb code has not been optimized yet. */ if (diff & 0x3) return 0; if (diff <= 0x01ffffff && diff >= -0x02000000) { code_ptr -= 2; *code_ptr = ((jump->flags & IS_BL) ? (BL - CONDITIONAL) : (B - CONDITIONAL)) | (code_ptr[2] & COND_MASK); jump->flags |= PATCH_B; return 1; } #endif return 0; } static SLJIT_INLINE void inline_set_jump_addr(sljit_uw jump_ptr, sljit_sw executable_offset, sljit_uw new_addr, sljit_s32 flush_cache) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw *ptr = (sljit_uw *)jump_ptr; sljit_uw *inst = (sljit_uw *)ptr[0]; sljit_uw mov_pc = ptr[1]; sljit_s32 bl = (mov_pc & 0x0000f000) != RD(TMP_PC); sljit_sw diff = (sljit_sw)(((sljit_sw)new_addr - (sljit_sw)(inst + 2) - executable_offset) >> 2); if (diff <= 0x7fffff && diff >= -0x800000) { /* Turn to branch. */ if (!bl) { inst[0] = (mov_pc & COND_MASK) | (B - CONDITIONAL) | (diff & 0xffffff); if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { inst[0] = (mov_pc & COND_MASK) | (BL - CONDITIONAL) | (diff & 0xffffff); inst[1] = NOP; if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } } } else { /* Get the position of the constant. */ if (mov_pc & (1 << 23)) ptr = inst + ((mov_pc & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != mov_pc) { inst[0] = mov_pc; if (!bl) { if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } else { inst[1] = BLX | RM(TMP_REG1); if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } } } *ptr = new_addr; } #else sljit_uw *inst = (sljit_uw*)jump_ptr; SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); inst[0] = MOVW | (inst[0] & 0xf000) | ((new_addr << 4) & 0xf0000) | (new_addr & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_addr >> 12) & 0xf0000) | ((new_addr >> 16) & 0xfff); if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif } static sljit_uw get_imm(sljit_uw imm); static SLJIT_INLINE void inline_set_const(sljit_uw addr, sljit_sw executable_offset, sljit_sw new_constant, sljit_s32 flush_cache) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw *ptr = (sljit_uw*)addr; sljit_uw *inst = (sljit_uw*)ptr[0]; sljit_uw ldr_literal = ptr[1]; sljit_uw src2; src2 = get_imm(new_constant); if (src2) { *inst = 0xe3a00000 | (ldr_literal & 0xf000) | src2; if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } src2 = get_imm(~new_constant); if (src2) { *inst = 0xe3e00000 | (ldr_literal & 0xf000) | src2; if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } return; } if (ldr_literal & (1 << 23)) ptr = inst + ((ldr_literal & 0xfff) >> 2) + 2; else ptr = inst + 1; if (*inst != ldr_literal) { *inst = ldr_literal; if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 1); } } *ptr = new_constant; #else sljit_uw *inst = (sljit_uw*)addr; SLJIT_ASSERT((inst[0] & 0xfff00000) == MOVW && (inst[1] & 0xfff00000) == MOVT); inst[0] = MOVW | (inst[0] & 0xf000) | ((new_constant << 4) & 0xf0000) | (new_constant & 0xfff); inst[1] = MOVT | (inst[1] & 0xf000) | ((new_constant >> 12) & 0xf0000) | ((new_constant >> 16) & 0xfff); if (flush_cache) { inst = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset); SLJIT_CACHE_FLUSH(inst, inst + 2); } #endif } SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler) { struct sljit_memory_fragment *buf; sljit_uw *code; sljit_uw *code_ptr; sljit_uw *buf_ptr; sljit_uw *buf_end; sljit_uw size; sljit_uw word_count; sljit_uw next_addr; sljit_sw executable_offset; sljit_sw addr; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) sljit_uw cpool_size; sljit_uw cpool_skip_alignment; sljit_uw cpool_current_index; sljit_uw *cpool_start_address; sljit_uw *last_pc_patch; struct future_patch *first_patch; #endif struct sljit_label *label; struct sljit_jump *jump; struct sljit_const *const_; struct sljit_put_label *put_label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_generate_code(compiler)); reverse_buf(compiler); /* Second code generation pass. */ #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) size = compiler->size + (compiler->patches << 1); if (compiler->cpool_fill > 0) size += compiler->cpool_fill + CONST_POOL_ALIGNMENT - 1; #else size = compiler->size; #endif code = (sljit_uw*)SLJIT_MALLOC_EXEC(size * sizeof(sljit_uw)); PTR_FAIL_WITH_EXEC_IF(code); buf = compiler->buf; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) cpool_size = 0; cpool_skip_alignment = 0; cpool_current_index = 0; cpool_start_address = NULL; first_patch = NULL; last_pc_patch = code; #endif code_ptr = code; word_count = 0; next_addr = 1; executable_offset = SLJIT_EXEC_OFFSET(code); label = compiler->labels; jump = compiler->jumps; const_ = compiler->consts; put_label = compiler->put_labels; if (label && label->size == 0) { label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); label = label->next; } do { buf_ptr = (sljit_uw*)buf->memory; buf_end = buf_ptr + (buf->used_size >> 2); do { word_count++; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (cpool_size > 0) { if (cpool_skip_alignment > 0) { buf_ptr++; cpool_skip_alignment--; } else { if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; if (++cpool_current_index >= cpool_size) { SLJIT_ASSERT(!first_patch); cpool_size = 0; if (label && label->size == word_count) { /* Points after the current instruction. */ label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); label->size = code_ptr - code; label = label->next; next_addr = compute_next_addr(label, jump, const_, put_label); } } } } else if ((*buf_ptr & 0xff000000) != PUSH_POOL) { #endif *code_ptr = *buf_ptr++; if (next_addr == word_count) { SLJIT_ASSERT(!label || label->size >= word_count); SLJIT_ASSERT(!jump || jump->addr >= word_count); SLJIT_ASSERT(!const_ || const_->addr >= word_count); SLJIT_ASSERT(!put_label || put_label->addr >= word_count); /* These structures are ordered by their address. */ if (jump && jump->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (detect_jump_type(jump, code_ptr, code, executable_offset)) code_ptr--; jump->addr = (sljit_uw)code_ptr; #else jump->addr = (sljit_uw)(code_ptr - 2); if (detect_jump_type(jump, code_ptr, code, executable_offset)) code_ptr -= 2; #endif jump = jump->next; } if (label && label->size == word_count) { /* code_ptr can be affected above. */ label->addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr + 1, executable_offset); label->size = (code_ptr + 1) - code; label = label->next; } if (const_ && const_->addr == word_count) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) const_->addr = (sljit_uw)code_ptr; #else const_->addr = (sljit_uw)(code_ptr - 1); #endif const_ = const_->next; } if (put_label && put_label->addr == word_count) { SLJIT_ASSERT(put_label->label); put_label->addr = (sljit_uw)code_ptr; put_label = put_label->next; } next_addr = compute_next_addr(label, jump, const_, put_label); } code_ptr++; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) } else { /* Fortunately, no need to shift. */ cpool_size = *buf_ptr++ & ~PUSH_POOL; SLJIT_ASSERT(cpool_size > 0); cpool_start_address = ALIGN_INSTRUCTION(code_ptr + 1); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, cpool_size); if (cpool_current_index > 0) { /* Unconditional branch. */ *code_ptr = B | (((cpool_start_address - code_ptr) + cpool_current_index - 2) & ~PUSH_POOL); code_ptr = cpool_start_address + cpool_current_index; } cpool_skip_alignment = CONST_POOL_ALIGNMENT - 1; cpool_current_index = 0; last_pc_patch = code_ptr; } #endif } while (buf_ptr < buf_end); buf = buf->next; } while (buf); SLJIT_ASSERT(!label); SLJIT_ASSERT(!jump); SLJIT_ASSERT(!const_); SLJIT_ASSERT(!put_label); #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) SLJIT_ASSERT(cpool_size == 0); if (compiler->cpool_fill > 0) { cpool_start_address = ALIGN_INSTRUCTION(code_ptr); cpool_current_index = patch_pc_relative_loads(last_pc_patch, code_ptr, cpool_start_address, compiler->cpool_fill); if (cpool_current_index > 0) code_ptr = cpool_start_address + cpool_current_index; buf_ptr = compiler->cpool; buf_end = buf_ptr + compiler->cpool_fill; cpool_current_index = 0; while (buf_ptr < buf_end) { if (SLJIT_UNLIKELY(resolve_const_pool_index(compiler, &first_patch, cpool_current_index, cpool_start_address, buf_ptr))) { SLJIT_FREE_EXEC(code); compiler->error = SLJIT_ERR_ALLOC_FAILED; return NULL; } buf_ptr++; cpool_current_index++; } SLJIT_ASSERT(!first_patch); } #endif jump = compiler->jumps; while (jump) { buf_ptr = (sljit_uw *)jump->addr; if (jump->flags & PATCH_B) { addr = (sljit_sw)SLJIT_ADD_EXEC_OFFSET(buf_ptr + 2, executable_offset); if (!(jump->flags & JUMP_ADDR)) { SLJIT_ASSERT(jump->flags & JUMP_LABEL); SLJIT_ASSERT(((sljit_sw)jump->u.label->addr - addr) <= 0x01ffffff && ((sljit_sw)jump->u.label->addr - addr) >= -0x02000000); *buf_ptr |= (((sljit_sw)jump->u.label->addr - addr) >> 2) & 0x00ffffff; } else { SLJIT_ASSERT(((sljit_sw)jump->u.target - addr) <= 0x01ffffff && ((sljit_sw)jump->u.target - addr) >= -0x02000000); *buf_ptr |= (((sljit_sw)jump->u.target - addr) >> 2) & 0x00ffffff; } } else if (jump->flags & SLJIT_REWRITABLE_JUMP) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) jump->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_uw)buf_ptr; code_ptr[1] = *buf_ptr; inline_set_jump_addr((sljit_uw)code_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); code_ptr += 2; #else inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif } else { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (jump->flags & IS_BL) buf_ptr--; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; *buf_ptr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target; #else inline_set_jump_addr((sljit_uw)buf_ptr, executable_offset, (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target, 0); #endif } jump = jump->next; } #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) const_ = compiler->consts; while (const_) { buf_ptr = (sljit_uw*)const_->addr; const_->addr = (sljit_uw)code_ptr; code_ptr[0] = (sljit_uw)buf_ptr; code_ptr[1] = *buf_ptr; if (*buf_ptr & (1 << 23)) buf_ptr += ((*buf_ptr & 0xfff) >> 2) + 2; else buf_ptr += 1; /* Set the value again (can be a simple constant). */ inline_set_const((sljit_uw)code_ptr, executable_offset, *buf_ptr, 0); code_ptr += 2; const_ = const_->next; } #endif put_label = compiler->put_labels; while (put_label) { addr = put_label->label->addr; buf_ptr = (sljit_uw*)put_label->addr; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) SLJIT_ASSERT((buf_ptr[0] & 0xffff0000) == 0xe59f0000); buf_ptr[((buf_ptr[0] & 0xfff) >> 2) + 2] = addr; #else SLJIT_ASSERT((buf_ptr[-1] & 0xfff00000) == MOVW && (buf_ptr[0] & 0xfff00000) == MOVT); buf_ptr[-1] |= ((addr << 4) & 0xf0000) | (addr & 0xfff); buf_ptr[0] |= ((addr >> 12) & 0xf0000) | ((addr >> 16) & 0xfff); #endif put_label = put_label->next; } SLJIT_ASSERT(code_ptr - code <= (sljit_s32)size); compiler->error = SLJIT_ERR_COMPILED; compiler->executable_offset = executable_offset; compiler->executable_size = (code_ptr - code) * sizeof(sljit_uw); code = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset); code_ptr = (sljit_uw *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset); SLJIT_CACHE_FLUSH(code, code_ptr); return code; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type) { switch (feature_type) { case SLJIT_HAS_FPU: #ifdef SLJIT_IS_FPU_AVAILABLE return SLJIT_IS_FPU_AVAILABLE; #else /* Available by default. */ return 1; #endif case SLJIT_HAS_CLZ: case SLJIT_HAS_CMOV: #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) case SLJIT_HAS_PREFETCH: #endif return 1; default: return 0; } } /* --------------------------------------------------------------------- */ /* Entry, exit */ /* --------------------------------------------------------------------- */ /* Creates an index in data_transfer_insts array. */ #define WORD_SIZE 0x00 #define BYTE_SIZE 0x01 #define HALF_SIZE 0x02 #define PRELOAD 0x03 #define SIGNED 0x04 #define LOAD_DATA 0x08 /* Flag bits for emit_op. */ #define ALLOW_IMM 0x10 #define ALLOW_INV_IMM 0x20 #define ALLOW_ANY_IMM (ALLOW_IMM | ALLOW_INV_IMM) /* s/l - store/load (1 bit) u/s - signed/unsigned (1 bit) w/b/h/N - word/byte/half/NOT allowed (2 bit) Storing signed and unsigned values are the same operations. */ static const sljit_uw data_transfer_insts[16] = { /* s u w */ 0xe5000000 /* str */, /* s u b */ 0xe5400000 /* strb */, /* s u h */ 0xe10000b0 /* strh */, /* s u N */ 0x00000000 /* not allowed */, /* s s w */ 0xe5000000 /* str */, /* s s b */ 0xe5400000 /* strb */, /* s s h */ 0xe10000b0 /* strh */, /* s s N */ 0x00000000 /* not allowed */, /* l u w */ 0xe5100000 /* ldr */, /* l u b */ 0xe5500000 /* ldrb */, /* l u h */ 0xe11000b0 /* ldrh */, /* l u p */ 0xf5500000 /* preload */, /* l s w */ 0xe5100000 /* ldr */, /* l s b */ 0xe11000d0 /* ldrsb */, /* l s h */ 0xe11000f0 /* ldrsh */, /* l s N */ 0x00000000 /* not allowed */, }; #define EMIT_DATA_TRANSFER(type, add, target_reg, base_reg, arg) \ (data_transfer_insts[(type) & 0xf] | ((add) << 23) | RD(target_reg) | RN(base_reg) | (arg)) /* Normal ldr/str instruction. Type2: ldrsb, ldrh, ldrsh */ #define IS_TYPE1_TRANSFER(type) \ (data_transfer_insts[(type) & 0xf] & 0x04000000) #define TYPE2_TRANSFER_IMM(imm) \ (((imm) & 0xf) | (((imm) & 0xf0) << 4) | (1 << 22)) static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w); SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 args, size, i, tmp; sljit_uw push; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); /* Push saved registers, temporary registers stmdb sp!, {..., lr} */ push = PUSH | (1 << 14); tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) push |= 1 << reg_map[i]; for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) push |= 1 << reg_map[i]; FAIL_IF(push_inst(compiler, push)); /* Stack must be aligned to 8 bytes: */ size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); local_size = ((size + local_size + 7) & ~7) - size; compiler->local_size = local_size; if (local_size > 0) FAIL_IF(emit_op(compiler, SLJIT_SUB, ALLOW_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, local_size)); args = get_arg_count(arg_types); if (args >= 1) FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S0) | RM(SLJIT_R0))); if (args >= 2) FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S1) | RM(SLJIT_R1))); if (args >= 3) FAIL_IF(push_inst(compiler, MOV | RD(SLJIT_S2) | RM(SLJIT_R2))); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 size; CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); compiler->local_size = ((size + local_size + 7) & ~7) - size; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { sljit_s32 i, tmp; sljit_uw pop; CHECK_ERROR(); CHECK(check_sljit_emit_return(compiler, op, src, srcw)); FAIL_IF(emit_mov_before_return(compiler, op, src, srcw)); if (compiler->local_size > 0) FAIL_IF(emit_op(compiler, SLJIT_ADD, ALLOW_IMM, SLJIT_SP, 0, SLJIT_SP, 0, SLJIT_IMM, compiler->local_size)); /* Push saved registers, temporary registers ldmia sp!, {..., pc} */ pop = POP | (1 << 15); tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = SLJIT_S0; i >= tmp; i--) pop |= 1 << reg_map[i]; for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) pop |= 1 << reg_map[i]; return push_inst(compiler, pop); } /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ /* flags: */ /* Arguments are swapped. */ #define ARGS_SWAPPED 0x01 /* Inverted immediate. */ #define INV_IMM 0x02 /* Source and destination is register. */ #define MOVE_REG_CONV 0x04 /* Unused return value. */ #define UNUSED_RETURN 0x08 /* SET_FLAGS must be (1 << 20) as it is also the value of S bit (can be used for optimization). */ #define SET_FLAGS (1 << 20) /* dst: reg src1: reg src2: reg or imm (if allowed) SRC2_IMM must be (1 << 25) as it is also the value of I bit (can be used for optimization). */ #define SRC2_IMM (1 << 25) #define EMIT_SHIFT_INS_AND_RETURN(opcode) \ SLJIT_ASSERT(!(flags & INV_IMM) && !(src2 & SRC2_IMM)); \ if (compiler->shift_imm != 0x20) { \ SLJIT_ASSERT(src1 == TMP_REG1); \ SLJIT_ASSERT(!(flags & ARGS_SWAPPED)); \ \ if (compiler->shift_imm != 0) \ return push_inst(compiler, MOV | (flags & SET_FLAGS) | \ RD(dst) | (compiler->shift_imm << 7) | (opcode << 5) | RM(src2)); \ return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | RM(src2)); \ } \ return push_inst(compiler, MOV | (flags & SET_FLAGS) | RD(dst) | \ (reg_map[(flags & ARGS_SWAPPED) ? src1 : src2] << 8) | (opcode << 5) | 0x10 | RM((flags & ARGS_SWAPPED) ? src2 : src1)); static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_s32 src2) { switch (GET_OPCODE(op)) { case SLJIT_MOV: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (dst != src2) { if (src2 & SRC2_IMM) { return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return push_inst(compiler, MOV | RD(dst) | RM(src2)); } return SLJIT_SUCCESS; case SLJIT_MOV_U8: case SLJIT_MOV_S8: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (flags & MOVE_REG_CONV) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (op == SLJIT_MOV_U8) return push_inst(compiler, AND | RD(dst) | RN(src2) | SRC2_IMM | 0xff); FAIL_IF(push_inst(compiler, MOV | RD(dst) | (24 << 7) | RM(src2))); return push_inst(compiler, MOV | RD(dst) | (24 << 7) | (op == SLJIT_MOV_U8 ? 0x20 : 0x40) | RM(dst)); #else return push_inst(compiler, (op == SLJIT_MOV_U8 ? UXTB : SXTB) | RD(dst) | RM(src2)); #endif } else if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return SLJIT_SUCCESS; case SLJIT_MOV_U16: case SLJIT_MOV_S16: SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & ARGS_SWAPPED)); if (flags & MOVE_REG_CONV) { #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) FAIL_IF(push_inst(compiler, MOV | RD(dst) | (16 << 7) | RM(src2))); return push_inst(compiler, MOV | RD(dst) | (16 << 7) | (op == SLJIT_MOV_U16 ? 0x20 : 0x40) | RM(dst)); #else return push_inst(compiler, (op == SLJIT_MOV_U16 ? UXTH : SXTH) | RD(dst) | RM(src2)); #endif } else if (dst != src2) { SLJIT_ASSERT(src2 & SRC2_IMM); return push_inst(compiler, ((flags & INV_IMM) ? MVN : MOV) | RD(dst) | src2); } return SLJIT_SUCCESS; case SLJIT_NOT: if (src2 & SRC2_IMM) { return push_inst(compiler, ((flags & INV_IMM) ? MOV : MVN) | (flags & SET_FLAGS) | RD(dst) | src2); } return push_inst(compiler, MVN | (flags & SET_FLAGS) | RD(dst) | RM(src2)); case SLJIT_CLZ: SLJIT_ASSERT(!(flags & INV_IMM)); SLJIT_ASSERT(!(src2 & SRC2_IMM)); FAIL_IF(push_inst(compiler, CLZ | RD(dst) | RM(src2))); return SLJIT_SUCCESS; case SLJIT_ADD: SLJIT_ASSERT(!(flags & INV_IMM)); if ((flags & (UNUSED_RETURN | SET_FLAGS)) == (UNUSED_RETURN | SET_FLAGS) && !(flags & ARGS_SWAPPED)) return push_inst(compiler, CMN | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); return push_inst(compiler, ADD | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_ADDC: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, ADC | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SUB: SLJIT_ASSERT(!(flags & INV_IMM)); if ((flags & (UNUSED_RETURN | SET_FLAGS)) == (UNUSED_RETURN | SET_FLAGS) && !(flags & ARGS_SWAPPED)) return push_inst(compiler, CMP | SET_FLAGS | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SUB : RSB) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SUBC: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, (!(flags & ARGS_SWAPPED) ? SBC : RSC) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_MUL: SLJIT_ASSERT(!(flags & INV_IMM)); SLJIT_ASSERT(!(src2 & SRC2_IMM)); if (!HAS_FLAGS(op)) return push_inst(compiler, MUL | (reg_map[dst] << 16) | (reg_map[src2] << 8) | reg_map[src1]); FAIL_IF(push_inst(compiler, SMULL | (reg_map[TMP_REG1] << 16) | (reg_map[dst] << 12) | (reg_map[src2] << 8) | reg_map[src1])); /* cmp TMP_REG1, dst asr #31. */ return push_inst(compiler, CMP | SET_FLAGS | RN(TMP_REG1) | RM(dst) | 0xfc0); case SLJIT_AND: return push_inst(compiler, (!(flags & INV_IMM) ? AND : BIC) | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_OR: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, ORR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_XOR: SLJIT_ASSERT(!(flags & INV_IMM)); return push_inst(compiler, EOR | (flags & SET_FLAGS) | RD(dst) | RN(src1) | ((src2 & SRC2_IMM) ? src2 : RM(src2))); case SLJIT_SHL: EMIT_SHIFT_INS_AND_RETURN(0); case SLJIT_LSHR: EMIT_SHIFT_INS_AND_RETURN(1); case SLJIT_ASHR: EMIT_SHIFT_INS_AND_RETURN(2); } SLJIT_UNREACHABLE(); return SLJIT_SUCCESS; } #undef EMIT_SHIFT_INS_AND_RETURN /* Tests whether the immediate can be stored in the 12 bit imm field. Returns with 0 if not possible. */ static sljit_uw get_imm(sljit_uw imm) { sljit_s32 rol; if (imm <= 0xff) return SRC2_IMM | imm; if (!(imm & 0xff000000)) { imm <<= 8; rol = 8; } else { imm = (imm << 24) | (imm >> 8); rol = 0; } if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) return SRC2_IMM | (imm >> 24) | (rol << 8); else return 0; } #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) static sljit_s32 generate_int(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm, sljit_s32 positive) { sljit_uw mask; sljit_uw imm1; sljit_uw imm2; sljit_s32 rol; /* Step1: Search a zero byte (8 continous zero bit). */ mask = 0xff000000; rol = 8; while(1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = 4 + (rol >> 1); break; } rol += 2; mask >>= 2; if (mask & 0x3) { /* rol by 8. */ imm = (imm << 8) | (imm >> 24); mask = 0xff00; rol = 24; while (1) { if (!(imm & mask)) { /* Rol imm by rol. */ imm = (imm << rol) | (imm >> (32 - rol)); /* Calculate arm rol. */ rol = (rol >> 1) - 8; break; } rol += 2; mask >>= 2; if (mask & 0x3) return 0; } break; } } /* The low 8 bit must be zero. */ SLJIT_ASSERT(!(imm & 0xff)); if (!(imm & 0xff000000)) { imm1 = SRC2_IMM | ((imm >> 16) & 0xff) | (((rol + 4) & 0xf) << 8); imm2 = SRC2_IMM | ((imm >> 8) & 0xff) | (((rol + 8) & 0xf) << 8); } else if (imm & 0xc0000000) { imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xff000000)) { imm <<= 8; rol += 4; } if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } else { if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } imm1 = SRC2_IMM | ((imm >> 24) & 0xff) | ((rol & 0xf) << 8); imm <<= 8; rol += 4; if (!(imm & 0xf0000000)) { imm <<= 4; rol += 2; } if (!(imm & 0xc0000000)) { imm <<= 2; rol += 1; } if (!(imm & 0x00ffffff)) imm2 = SRC2_IMM | (imm >> 24) | ((rol & 0xf) << 8); else return 0; } FAIL_IF(push_inst(compiler, (positive ? MOV : MVN) | RD(reg) | imm1)); FAIL_IF(push_inst(compiler, (positive ? ORR : BIC) | RD(reg) | RN(reg) | imm2)); return 1; } #endif static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_uw imm) { sljit_uw tmp; #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) if (!(imm & ~0xffff)) return push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff)); #endif /* Create imm by 1 inst. */ tmp = get_imm(imm); if (tmp) return push_inst(compiler, MOV | RD(reg) | tmp); tmp = get_imm(~imm); if (tmp) return push_inst(compiler, MVN | RD(reg) | tmp); #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) /* Create imm by 2 inst. */ FAIL_IF(generate_int(compiler, reg, imm, 1)); FAIL_IF(generate_int(compiler, reg, ~imm, 0)); /* Load integer. */ return push_inst_with_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, reg, TMP_PC, 0), imm); #else FAIL_IF(push_inst(compiler, MOVW | RD(reg) | ((imm << 4) & 0xf0000) | (imm & 0xfff))); if (imm <= 0xffff) return SLJIT_SUCCESS; return push_inst(compiler, MOVT | RD(reg) | ((imm >> 12) & 0xf0000) | ((imm >> 16) & 0xfff)); #endif } static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 tmp_reg) { sljit_uw imm, offset_reg; sljit_uw is_type1_transfer = IS_TYPE1_TRANSFER(flags); SLJIT_ASSERT (arg & SLJIT_MEM); SLJIT_ASSERT((arg & REG_MASK) != tmp_reg); if ((arg & REG_MASK) == SLJIT_UNUSED) { if (is_type1_transfer) { FAIL_IF(load_immediate(compiler, tmp_reg, argw & ~0xfff)); argw &= 0xfff; } else { FAIL_IF(load_immediate(compiler, tmp_reg, argw & ~0xff)); argw &= 0xff; } return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, tmp_reg, is_type1_transfer ? argw : TYPE2_TRANSFER_IMM(argw))); } if (arg & OFFS_REG_MASK) { offset_reg = OFFS_REG(arg); arg &= REG_MASK; argw &= 0x3; if (argw != 0 && !is_type1_transfer) { FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | RM(offset_reg) | (argw << 7))); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, tmp_reg, TYPE2_TRANSFER_IMM(0))); } /* Bit 25: RM is offset. */ return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, RM(offset_reg) | (is_type1_transfer ? (1 << 25) : 0) | (argw << 7))); } arg &= REG_MASK; if (is_type1_transfer) { if (argw > 0xfff) { imm = get_imm(argw & ~0xfff); if (imm) { FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | imm)); argw = argw & 0xfff; arg = tmp_reg; } } else if (argw < -0xfff) { imm = get_imm(-argw & ~0xfff); if (imm) { FAIL_IF(push_inst(compiler, SUB | RD(tmp_reg) | RN(arg) | imm)); argw = -(-argw & 0xfff); arg = tmp_reg; } } if (argw >= 0 && argw <= 0xfff) return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, argw)); if (argw < 0 && argw >= -0xfff) return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 0, reg, arg, -argw)); } else { if (argw > 0xff) { imm = get_imm(argw & ~0xff); if (imm) { FAIL_IF(push_inst(compiler, ADD | RD(tmp_reg) | RN(arg) | imm)); argw = argw & 0xff; arg = tmp_reg; } } else if (argw < -0xff) { imm = get_imm(-argw & ~0xff); if (imm) { FAIL_IF(push_inst(compiler, SUB | RD(tmp_reg) | RN(arg) | imm)); argw = -(-argw & 0xff); arg = tmp_reg; } } if (argw >= 0 && argw <= 0xff) return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, TYPE2_TRANSFER_IMM(argw))); if (argw < 0 && argw >= -0xff) { argw = -argw; return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 0, reg, arg, TYPE2_TRANSFER_IMM(argw))); } } FAIL_IF(load_immediate(compiler, tmp_reg, argw)); return push_inst(compiler, EMIT_DATA_TRANSFER(flags, 1, reg, arg, RM(tmp_reg) | (is_type1_transfer ? (1 << 25) : 0))); } static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 inp_flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { /* src1 is reg or TMP_REG1 src2 is reg, TMP_REG2, or imm result goes to TMP_REG2, so put result can use TMP_REG1. */ /* We prefers register and simple consts. */ sljit_s32 dst_reg; sljit_s32 src1_reg; sljit_s32 src2_reg; sljit_s32 flags = HAS_FLAGS(op) ? SET_FLAGS : 0; /* Destination check. */ if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) flags |= UNUSED_RETURN; SLJIT_ASSERT(!(inp_flags & ALLOW_INV_IMM) || (inp_flags & ALLOW_IMM)); src2_reg = 0; do { if (!(inp_flags & ALLOW_IMM)) break; if (src2 & SLJIT_IMM) { src2_reg = get_imm(src2w); if (src2_reg) break; if (inp_flags & ALLOW_INV_IMM) { src2_reg = get_imm(~src2w); if (src2_reg) { flags |= INV_IMM; break; } } if (GET_OPCODE(op) == SLJIT_ADD) { src2_reg = get_imm(-src2w); if (src2_reg) { op = SLJIT_SUB | GET_ALL_FLAGS(op); break; } } if (GET_OPCODE(op) == SLJIT_SUB) { src2_reg = get_imm(-src2w); if (src2_reg) { op = SLJIT_ADD | GET_ALL_FLAGS(op); break; } } } if (src1 & SLJIT_IMM) { src2_reg = get_imm(src1w); if (src2_reg) { flags |= ARGS_SWAPPED; src1 = src2; src1w = src2w; break; } if (inp_flags & ALLOW_INV_IMM) { src2_reg = get_imm(~src1w); if (src2_reg) { flags |= ARGS_SWAPPED | INV_IMM; src1 = src2; src1w = src2w; break; } } if (GET_OPCODE(op) == SLJIT_ADD) { src2_reg = get_imm(-src1w); if (src2_reg) { /* Note: add is commutative operation. */ src1 = src2; src1w = src2w; op = SLJIT_SUB | GET_ALL_FLAGS(op); break; } } } } while(0); /* Source 1. */ if (FAST_IS_REG(src1)) src1_reg = src1; else if (src1 & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, TMP_REG1, src1, src1w, TMP_REG1)); src1_reg = TMP_REG1; } else { FAIL_IF(load_immediate(compiler, TMP_REG1, src1w)); src1_reg = TMP_REG1; } /* Destination. */ dst_reg = SLOW_IS_REG(dst) ? dst : TMP_REG2; if (op <= SLJIT_MOV_P) { if (dst & SLJIT_MEM) { if (inp_flags & BYTE_SIZE) inp_flags &= ~SIGNED; if (FAST_IS_REG(src2)) return emit_op_mem(compiler, inp_flags, src2, dst, dstw, TMP_REG2); } if (FAST_IS_REG(src2) && dst_reg != TMP_REG2) flags |= MOVE_REG_CONV; } /* Source 2. */ if (src2_reg == 0) { src2_reg = (op <= SLJIT_MOV_P) ? dst_reg : TMP_REG2; if (FAST_IS_REG(src2)) src2_reg = src2; else if (src2 & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, inp_flags | LOAD_DATA, src2_reg, src2, src2w, TMP_REG2)); else FAIL_IF(load_immediate(compiler, src2_reg, src2w)); } FAIL_IF(emit_single_op(compiler, op, flags, dst_reg, src1_reg, src2_reg)); if (!(dst & SLJIT_MEM)) return SLJIT_SUCCESS; return emit_op_mem(compiler, inp_flags, dst_reg, dst, dstw, TMP_REG1); } #ifdef __cplusplus extern "C" { #endif #if defined(__GNUC__) extern unsigned int __aeabi_uidivmod(unsigned int numerator, unsigned int denominator); extern int __aeabi_idivmod(int numerator, int denominator); #else #error "Software divmod functions are needed" #endif #ifdef __cplusplus } #endif SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) { sljit_sw saved_reg_list[3]; sljit_sw saved_reg_count; CHECK_ERROR(); CHECK(check_sljit_emit_op0(compiler, op)); op = GET_OPCODE(op); switch (op) { case SLJIT_BREAKPOINT: FAIL_IF(push_inst(compiler, BKPT)); break; case SLJIT_NOP: FAIL_IF(push_inst(compiler, NOP)); break; case SLJIT_LMUL_UW: case SLJIT_LMUL_SW: return push_inst(compiler, (op == SLJIT_LMUL_UW ? UMULL : SMULL) | (reg_map[SLJIT_R1] << 16) | (reg_map[SLJIT_R0] << 12) | (reg_map[SLJIT_R0] << 8) | reg_map[SLJIT_R1]); case SLJIT_DIVMOD_UW: case SLJIT_DIVMOD_SW: case SLJIT_DIV_UW: case SLJIT_DIV_SW: SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments); SLJIT_ASSERT(reg_map[2] == 1 && reg_map[3] == 2 && reg_map[4] == 3); saved_reg_count = 0; if (compiler->scratches >= 4) saved_reg_list[saved_reg_count++] = 3; if (compiler->scratches >= 3) saved_reg_list[saved_reg_count++] = 2; if (op >= SLJIT_DIV_UW) saved_reg_list[saved_reg_count++] = 1; if (saved_reg_count > 0) { FAIL_IF(push_inst(compiler, 0xe52d0000 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* str rX, [sp, #-8/-16]! */)); if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst(compiler, 0xe58d0004 | (saved_reg_list[1] << 12) /* str rX, [sp, #4] */)); } if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst(compiler, 0xe58d0008 | (saved_reg_list[2] << 12) /* str rX, [sp, #8] */)); } } #if defined(__GNUC__) FAIL_IF(sljit_emit_ijump(compiler, SLJIT_FAST_CALL, SLJIT_IMM, ((op | 0x2) == SLJIT_DIV_UW ? SLJIT_FUNC_OFFSET(__aeabi_uidivmod) : SLJIT_FUNC_OFFSET(__aeabi_idivmod)))); #else #error "Software divmod functions are needed" #endif if (saved_reg_count > 0) { if (saved_reg_count >= 3) { SLJIT_ASSERT(saved_reg_list[2] < 8); FAIL_IF(push_inst(compiler, 0xe59d0008 | (saved_reg_list[2] << 12) /* ldr rX, [sp, #8] */)); } if (saved_reg_count >= 2) { SLJIT_ASSERT(saved_reg_list[1] < 8); FAIL_IF(push_inst(compiler, 0xe59d0004 | (saved_reg_list[1] << 12) /* ldr rX, [sp, #4] */)); } return push_inst(compiler, 0xe49d0000 | (saved_reg_count >= 3 ? 16 : 8) | (saved_reg_list[0] << 12) /* ldr rX, [sp], #8/16 */); } return SLJIT_SUCCESS; case SLJIT_ENDBR: case SLJIT_SKIP_FRAMES_BEFORE_RETURN: return SLJIT_SUCCESS; } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src, srcw); switch (GET_OPCODE(op)) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: return emit_op(compiler, SLJIT_MOV, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_MOV_U8: return emit_op(compiler, SLJIT_MOV_U8, ALLOW_ANY_IMM | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8)srcw : srcw); case SLJIT_MOV_S8: return emit_op(compiler, SLJIT_MOV_S8, ALLOW_ANY_IMM | SIGNED | BYTE_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8)srcw : srcw); case SLJIT_MOV_U16: return emit_op(compiler, SLJIT_MOV_U16, ALLOW_ANY_IMM | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16)srcw : srcw); case SLJIT_MOV_S16: return emit_op(compiler, SLJIT_MOV_S16, ALLOW_ANY_IMM | SIGNED | HALF_SIZE, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16)srcw : srcw); case SLJIT_NOT: return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, TMP_REG1, 0, src, srcw); case SLJIT_NEG: #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_op2(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), dst, dstw, SLJIT_IMM, 0, src, srcw); case SLJIT_CLZ: return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { CHECK_ERROR(); CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); if (dst == SLJIT_UNUSED && !HAS_FLAGS(op)) return SLJIT_SUCCESS; switch (GET_OPCODE(op)) { case SLJIT_ADD: case SLJIT_ADDC: case SLJIT_SUB: case SLJIT_SUBC: case SLJIT_OR: case SLJIT_XOR: return emit_op(compiler, op, ALLOW_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_MUL: return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); case SLJIT_AND: return emit_op(compiler, op, ALLOW_ANY_IMM, dst, dstw, src1, src1w, src2, src2w); case SLJIT_SHL: case SLJIT_LSHR: case SLJIT_ASHR: if (src2 & SLJIT_IMM) { compiler->shift_imm = src2w & 0x1f; return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src1, src1w); } else { compiler->shift_imm = 0x20; return emit_op(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w); } } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_op_src(compiler, op, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); switch (op) { case SLJIT_FAST_RETURN: SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG2) | RM(src))); else FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG2, src, srcw, TMP_REG1)); return push_inst(compiler, BX | RM(TMP_REG2)); case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN: return SLJIT_SUCCESS; case SLJIT_PREFETCH_L1: case SLJIT_PREFETCH_L2: case SLJIT_PREFETCH_L3: case SLJIT_PREFETCH_ONCE: #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) SLJIT_ASSERT(src & SLJIT_MEM); return emit_op_mem(compiler, PRELOAD | LOAD_DATA, TMP_PC, src, srcw, TMP_REG1); #else /* !SLJIT_CONFIG_ARM_V7 */ return SLJIT_SUCCESS; #endif /* SLJIT_CONFIG_ARM_V7 */ } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_register_index(reg)); return reg_map[reg]; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_float_register_index(sljit_s32 reg) { CHECK_REG_INDEX(check_sljit_get_float_register_index(reg)); return (freg_map[reg] << 1); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler, void *instruction, sljit_s32 size) { CHECK_ERROR(); CHECK(check_sljit_emit_op_custom(compiler, instruction, size)); return push_inst(compiler, *(sljit_uw*)instruction); } /* --------------------------------------------------------------------- */ /* Floating point operators */ /* --------------------------------------------------------------------- */ #define FPU_LOAD (1 << 20) #define EMIT_FPU_DATA_TRANSFER(inst, add, base, freg, offs) \ ((inst) | ((add) << 23) | (reg_map[base] << 16) | (freg_map[freg] << 12) | (offs)) #define EMIT_FPU_OPERATION(opcode, mode, dst, src1, src2) \ ((opcode) | (mode) | (freg_map[dst] << 12) | freg_map[src1] | (freg_map[src2] << 16)) static sljit_s32 emit_fop_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw) { sljit_uw imm; sljit_sw inst = VSTR_F32 | (flags & (SLJIT_F32_OP | FPU_LOAD)); SLJIT_ASSERT(arg & SLJIT_MEM); arg &= ~SLJIT_MEM; if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) { FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(OFFS_REG(arg)) | ((argw & 0x3) << 7))); arg = TMP_REG2; argw = 0; } /* Fast loads and stores. */ if (arg) { if (!(argw & ~0x3fc)) return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, arg & REG_MASK, reg, argw >> 2)); if (!(-argw & ~0x3fc)) return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, arg & REG_MASK, reg, (-argw) >> 2)); imm = get_imm(argw & ~0x3fc); if (imm) { FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | imm)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, (argw & 0x3fc) >> 2)); } imm = get_imm(-argw & ~0x3fc); if (imm) { argw = -argw; FAIL_IF(push_inst(compiler, SUB | RD(TMP_REG2) | RN(arg & REG_MASK) | imm)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 0, TMP_REG2, reg, (argw & 0x3fc) >> 2)); } } if (arg) { FAIL_IF(load_immediate(compiler, TMP_REG2, argw)); FAIL_IF(push_inst(compiler, ADD | RD(TMP_REG2) | RN(arg & REG_MASK) | RM(TMP_REG2))); } else FAIL_IF(load_immediate(compiler, TMP_REG2, argw)); return push_inst(compiler, EMIT_FPU_DATA_TRANSFER(inst, 1, TMP_REG2, reg, 0)); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { op ^= SLJIT_F32_OP; if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src, srcw)); src = TMP_FREG1; } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_S32_F32, op & SLJIT_F32_OP, TMP_FREG1, src, 0))); if (FAST_IS_REG(dst)) return push_inst(compiler, VMOV | (1 << 20) | RD(dst) | (freg_map[TMP_FREG1] << 16)); /* Store the integer value from a VFP register. */ return emit_fop_mem(compiler, 0, TMP_FREG1, dst, dstw); } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; op ^= SLJIT_F32_OP; if (FAST_IS_REG(src)) FAIL_IF(push_inst(compiler, VMOV | RD(src) | (freg_map[TMP_FREG1] << 16))); else if (src & SLJIT_MEM) { /* Load the integer value into a VFP register. */ FAIL_IF(emit_fop_mem(compiler, FPU_LOAD, TMP_FREG1, src, srcw)); } else { FAIL_IF(load_immediate(compiler, TMP_REG1, srcw)); FAIL_IF(push_inst(compiler, VMOV | RD(TMP_REG1) | (freg_map[TMP_FREG1] << 16))); } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_F32_S32, op & SLJIT_F32_OP, dst_r, TMP_FREG1, 0))); if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw); return SLJIT_SUCCESS; } static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { op ^= SLJIT_F32_OP; if (src1 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w)); src1 = TMP_FREG1; } if (src2 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w)); src2 = TMP_FREG2; } FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCMP_F32, op & SLJIT_F32_OP, src1, src2, 0))); return push_inst(compiler, VMRS); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_s32 dst_r; CHECK_ERROR(); SLJIT_COMPILE_ASSERT((SLJIT_F32_OP == 0x100), float_transfer_bit_error); SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw); dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (GET_OPCODE(op) != SLJIT_CONV_F64_FROM_F32) op ^= SLJIT_F32_OP; if (src & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, dst_r, src, srcw)); src = dst_r; } switch (GET_OPCODE(op)) { case SLJIT_MOV_F64: if (src != dst_r) { if (dst_r != TMP_FREG1) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, op & SLJIT_F32_OP, dst_r, src, 0))); else dst_r = src; } break; case SLJIT_NEG_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VNEG_F32, op & SLJIT_F32_OP, dst_r, src, 0))); break; case SLJIT_ABS_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VABS_F32, op & SLJIT_F32_OP, dst_r, src, 0))); break; case SLJIT_CONV_F64_FROM_F32: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VCVT_F64_F32, op & SLJIT_F32_OP, dst_r, src, 0))); op ^= SLJIT_F32_OP; break; } if (dst & SLJIT_MEM) return emit_fop_mem(compiler, (op & SLJIT_F32_OP), dst_r, dst, dstw); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w) { sljit_s32 dst_r; CHECK_ERROR(); CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w)); ADJUST_LOCAL_OFFSET(dst, dstw); ADJUST_LOCAL_OFFSET(src1, src1w); ADJUST_LOCAL_OFFSET(src2, src2w); op ^= SLJIT_F32_OP; dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1; if (src2 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG2, src2, src2w)); src2 = TMP_FREG2; } if (src1 & SLJIT_MEM) { FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP) | FPU_LOAD, TMP_FREG1, src1, src1w)); src1 = TMP_FREG1; } switch (GET_OPCODE(op)) { case SLJIT_ADD_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VADD_F32, op & SLJIT_F32_OP, dst_r, src2, src1))); break; case SLJIT_SUB_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VSUB_F32, op & SLJIT_F32_OP, dst_r, src2, src1))); break; case SLJIT_MUL_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMUL_F32, op & SLJIT_F32_OP, dst_r, src2, src1))); break; case SLJIT_DIV_F64: FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VDIV_F32, op & SLJIT_F32_OP, dst_r, src2, src1))); break; } if (dst_r == TMP_FREG1) FAIL_IF(emit_fop_mem(compiler, (op & SLJIT_F32_OP), TMP_FREG1, dst, dstw)); return SLJIT_SUCCESS; } #undef FPU_LOAD #undef EMIT_FPU_DATA_TRANSFER /* --------------------------------------------------------------------- */ /* Other instructions */ /* --------------------------------------------------------------------- */ SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); SLJIT_ASSERT(reg_map[TMP_REG2] == 14); if (FAST_IS_REG(dst)) return push_inst(compiler, MOV | RD(dst) | RM(TMP_REG2)); /* Memory. */ return emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1); } /* --------------------------------------------------------------------- */ /* Conditional instructions */ /* --------------------------------------------------------------------- */ static sljit_uw get_cc(sljit_s32 type) { switch (type) { case SLJIT_EQUAL: case SLJIT_MUL_NOT_OVERFLOW: case SLJIT_EQUAL_F64: return 0x00000000; case SLJIT_NOT_EQUAL: case SLJIT_MUL_OVERFLOW: case SLJIT_NOT_EQUAL_F64: return 0x10000000; case SLJIT_LESS: case SLJIT_LESS_F64: return 0x30000000; case SLJIT_GREATER_EQUAL: case SLJIT_GREATER_EQUAL_F64: return 0x20000000; case SLJIT_GREATER: case SLJIT_GREATER_F64: return 0x80000000; case SLJIT_LESS_EQUAL: case SLJIT_LESS_EQUAL_F64: return 0x90000000; case SLJIT_SIG_LESS: return 0xb0000000; case SLJIT_SIG_GREATER_EQUAL: return 0xa0000000; case SLJIT_SIG_GREATER: return 0xc0000000; case SLJIT_SIG_LESS_EQUAL: return 0xd0000000; case SLJIT_OVERFLOW: case SLJIT_UNORDERED_F64: return 0x60000000; case SLJIT_NOT_OVERFLOW: case SLJIT_ORDERED_F64: return 0x70000000; default: SLJIT_ASSERT(type >= SLJIT_JUMP && type <= SLJIT_CALL_CDECL); return 0xe0000000; } } SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler) { struct sljit_label *label; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_label(compiler)); if (compiler->last_label && compiler->last_label->size == compiler->size) return compiler->last_label; label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label)); PTR_FAIL_IF(!label); set_label(label, compiler); return label; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type) { struct sljit_jump *jump; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_jump(compiler, type)); jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); PTR_FAIL_IF(!jump); set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP); type &= 0xff; SLJIT_ASSERT(reg_map[TMP_REG1] != 14); #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (type >= SLJIT_FAST_CALL) PTR_FAIL_IF(prepare_blx(compiler)); PTR_FAIL_IF(push_inst_with_unique_literal(compiler, ((EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0)) & ~COND_MASK) | get_cc(type), 0)); if (jump->flags & SLJIT_REWRITABLE_JUMP) { jump->addr = compiler->size; compiler->patches++; } if (type >= SLJIT_FAST_CALL) { jump->flags |= IS_BL; PTR_FAIL_IF(emit_blx(compiler)); } if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) jump->addr = compiler->size; #else if (type >= SLJIT_FAST_CALL) jump->flags |= IS_BL; PTR_FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); PTR_FAIL_IF(push_inst(compiler, (((type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)) & ~COND_MASK) | get_cc(type))); jump->addr = compiler->size; #endif return jump; } #ifdef __SOFTFP__ static sljit_s32 softfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src) { sljit_s32 stack_offset = 0; sljit_s32 arg_count = 0; sljit_s32 word_arg_offset = 0; sljit_s32 float_arg_count = 0; sljit_s32 types = 0; sljit_s32 src_offset = 4 * sizeof(sljit_sw); sljit_u8 offsets[4]; if (src && FAST_IS_REG(*src)) src_offset = reg_map[*src] * sizeof(sljit_sw); arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { types = (types << SLJIT_DEF_SHIFT) | (arg_types & SLJIT_DEF_MASK); switch (arg_types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_f32); arg_count++; float_arg_count++; break; case SLJIT_ARG_TYPE_F64: if (stack_offset & 0x7) stack_offset += sizeof(sljit_sw); offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_f64); arg_count++; float_arg_count++; break; default: offsets[arg_count] = (sljit_u8)stack_offset; stack_offset += sizeof(sljit_sw); arg_count++; word_arg_offset += sizeof(sljit_sw); break; } arg_types >>= SLJIT_DEF_SHIFT; } if (stack_offset > 16) FAIL_IF(push_inst(compiler, SUB | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | (((stack_offset - 16) + 0x7) & ~0x7))); /* Process arguments in reversed direction. */ while (types) { switch (types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: arg_count--; float_arg_count--; stack_offset = offsets[arg_count]; if (stack_offset < 16) { if (src_offset == stack_offset) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } FAIL_IF(push_inst(compiler, VMOV | 0x100000 | (float_arg_count << 16) | (stack_offset << 10))); } else FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800000 | RN(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2))); break; case SLJIT_ARG_TYPE_F64: arg_count--; float_arg_count--; stack_offset = offsets[arg_count]; SLJIT_ASSERT((stack_offset & 0x7) == 0); if (stack_offset < 16) { if (src_offset == stack_offset || src_offset == stack_offset + sizeof(sljit_sw)) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } FAIL_IF(push_inst(compiler, VMOV2 | 0x100000 | (stack_offset << 10) | ((stack_offset + sizeof(sljit_sw)) << 14) | float_arg_count)); } else FAIL_IF(push_inst(compiler, VSTR_F32 | 0x800100 | RN(SLJIT_SP) | (float_arg_count << 12) | ((stack_offset - 16) >> 2))); break; default: arg_count--; word_arg_offset -= sizeof(sljit_sw); stack_offset = offsets[arg_count]; SLJIT_ASSERT(stack_offset >= word_arg_offset); if (stack_offset != word_arg_offset) { if (stack_offset < 16) { if (src_offset == stack_offset) { FAIL_IF(push_inst(compiler, MOV | RD(TMP_REG1) | (src_offset >> 2))); *src = TMP_REG1; } else if (src_offset == word_arg_offset) { *src = 1 + (stack_offset >> 2); src_offset = stack_offset; } FAIL_IF(push_inst(compiler, MOV | (stack_offset << 10) | (word_arg_offset >> 2))); } else FAIL_IF(push_inst(compiler, data_transfer_insts[WORD_SIZE] | 0x800000 | RN(SLJIT_SP) | (word_arg_offset << 10) | (stack_offset - 16))); } break; } types >>= SLJIT_DEF_SHIFT; } return SLJIT_SUCCESS; } static sljit_s32 softfloat_post_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { sljit_s32 stack_size = 0; if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32) FAIL_IF(push_inst(compiler, VMOV | (0 << 16) | (0 << 12))); if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64) FAIL_IF(push_inst(compiler, VMOV2 | (1 << 16) | (0 << 12) | 0)); arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { switch (arg_types & SLJIT_DEF_MASK) { case SLJIT_ARG_TYPE_F32: stack_size += sizeof(sljit_f32); break; case SLJIT_ARG_TYPE_F64: if (stack_size & 0x7) stack_size += sizeof(sljit_sw); stack_size += sizeof(sljit_f64); break; default: stack_size += sizeof(sljit_sw); break; } arg_types >>= SLJIT_DEF_SHIFT; } if (stack_size <= 16) return SLJIT_SUCCESS; return push_inst(compiler, ADD | RD(SLJIT_SP) | RN(SLJIT_SP) | SRC2_IMM | (((stack_size - 16) + 0x7) & ~0x7)); } #else /* !__SOFTFP__ */ static sljit_s32 hardfloat_call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types) { sljit_u32 remap = 0; sljit_u32 offset = 0; sljit_u32 new_offset, mask; /* Remove return value. */ arg_types >>= SLJIT_DEF_SHIFT; while (arg_types) { if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F32) { new_offset = 0; mask = 1; while (remap & mask) { new_offset++; mask <<= 1; } remap |= mask; if (offset != new_offset) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, 0, (new_offset >> 1) + 1, (offset >> 1) + 1, 0) | ((new_offset & 0x1) ? 0x400000 : 0))); offset += 2; } else if ((arg_types & SLJIT_DEF_MASK) == SLJIT_ARG_TYPE_F64) { new_offset = 0; mask = 3; while (remap & mask) { new_offset += 2; mask <<= 2; } remap |= mask; if (offset != new_offset) FAIL_IF(push_inst(compiler, EMIT_FPU_OPERATION(VMOV_F32, SLJIT_F32_OP, (new_offset >> 1) + 1, (offset >> 1) + 1, 0))); offset += 2; } arg_types >>= SLJIT_DEF_SHIFT; } return SLJIT_SUCCESS; } #endif /* __SOFTFP__ */ #undef EMIT_FPU_OPERATION SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types) { #ifdef __SOFTFP__ struct sljit_jump *jump; #endif CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types)); #ifdef __SOFTFP__ PTR_FAIL_IF(softfloat_call_with_args(compiler, arg_types, NULL)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif jump = sljit_emit_jump(compiler, type); PTR_FAIL_IF(jump == NULL); PTR_FAIL_IF(softfloat_post_call_with_args(compiler, arg_types)); return jump; #else /* !__SOFTFP__ */ PTR_FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_jump(compiler, type); #endif /* __SOFTFP__ */ } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw) { struct sljit_jump *jump; CHECK_ERROR(); CHECK(check_sljit_emit_ijump(compiler, type, src, srcw)); ADJUST_LOCAL_OFFSET(src, srcw); SLJIT_ASSERT(reg_map[TMP_REG1] != 14); if (!(src & SLJIT_IMM)) { if (FAST_IS_REG(src)) { SLJIT_ASSERT(reg_map[src] != 14); return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(src)); } SLJIT_ASSERT(src & SLJIT_MEM); FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1)); return push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1)); } /* These jumps are converted to jump/call instructions when possible. */ jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump)); FAIL_IF(!jump); set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_BL : 0)); jump->u.target = srcw; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) if (type >= SLJIT_FAST_CALL) FAIL_IF(prepare_blx(compiler)); FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, type <= SLJIT_JUMP ? TMP_PC : TMP_REG1, TMP_PC, 0), 0)); if (type >= SLJIT_FAST_CALL) FAIL_IF(emit_blx(compiler)); #else FAIL_IF(emit_imm(compiler, TMP_REG1, 0)); FAIL_IF(push_inst(compiler, (type <= SLJIT_JUMP ? BX : BLX) | RM(TMP_REG1))); #endif jump->addr = compiler->size; return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw)); #ifdef __SOFTFP__ if (src & SLJIT_MEM) { FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, src, srcw, TMP_REG1)); src = TMP_REG1; } FAIL_IF(softfloat_call_with_args(compiler, arg_types, &src)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif FAIL_IF(sljit_emit_ijump(compiler, type, src, srcw)); return softfloat_post_call_with_args(compiler, arg_types); #else /* !__SOFTFP__ */ FAIL_IF(hardfloat_call_with_args(compiler, arg_types)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_ijump(compiler, type, src, srcw); #endif /* __SOFTFP__ */ } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 type) { sljit_s32 dst_reg, flags = GET_ALL_FLAGS(op); sljit_uw cc, ins; CHECK_ERROR(); CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type)); ADJUST_LOCAL_OFFSET(dst, dstw); op = GET_OPCODE(op); cc = get_cc(type & 0xff); dst_reg = FAST_IS_REG(dst) ? dst : TMP_REG1; if (op < SLJIT_ADD) { FAIL_IF(push_inst(compiler, MOV | RD(dst_reg) | SRC2_IMM | 0)); FAIL_IF(push_inst(compiler, ((MOV | RD(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc)); if (dst & SLJIT_MEM) return emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2); return SLJIT_SUCCESS; } ins = (op == SLJIT_AND ? AND : (op == SLJIT_OR ? ORR : EOR)); if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE | LOAD_DATA, TMP_REG1, dst, dstw, TMP_REG2)); FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 1) & ~COND_MASK) | cc)); if (op == SLJIT_AND) FAIL_IF(push_inst(compiler, ((ins | RD(dst_reg) | RN(dst_reg) | SRC2_IMM | 0) & ~COND_MASK) | (cc ^ 0x10000000))); if (dst & SLJIT_MEM) FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG1, dst, dstw, TMP_REG2)); if (flags & SLJIT_SET_Z) return push_inst(compiler, MOV | SET_FLAGS | RD(TMP_REG2) | RM(dst_reg)); return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_cmov(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 dst_reg, sljit_s32 src, sljit_sw srcw) { sljit_uw cc, tmp; CHECK_ERROR(); CHECK(check_sljit_emit_cmov(compiler, type, dst_reg, src, srcw)); dst_reg &= ~SLJIT_I32_OP; cc = get_cc(type & 0xff); if (SLJIT_UNLIKELY(src & SLJIT_IMM)) { tmp = get_imm(srcw); if (tmp) return push_inst(compiler, ((MOV | RD(dst_reg) | tmp) & ~COND_MASK) | cc); tmp = get_imm(~srcw); if (tmp) return push_inst(compiler, ((MVN | RD(dst_reg) | tmp) & ~COND_MASK) | cc); #if (defined SLJIT_CONFIG_ARM_V7 && SLJIT_CONFIG_ARM_V7) tmp = (sljit_uw) srcw; FAIL_IF(push_inst(compiler, (MOVW & ~COND_MASK) | cc | RD(dst_reg) | ((tmp << 4) & 0xf0000) | (tmp & 0xfff))); if (tmp <= 0xffff) return SLJIT_SUCCESS; return push_inst(compiler, (MOVT & ~COND_MASK) | cc | RD(dst_reg) | ((tmp >> 12) & 0xf0000) | ((tmp >> 16) & 0xfff)); #else FAIL_IF(load_immediate(compiler, TMP_REG1, srcw)); src = TMP_REG1; #endif } return push_inst(compiler, ((MOV | RD(dst_reg) | RM(src)) & ~COND_MASK) | cc); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 reg, sljit_s32 mem, sljit_sw memw) { sljit_s32 flags; sljit_uw is_type1_transfer, inst; CHECK_ERROR(); CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw)); is_type1_transfer = 1; switch (type & 0xff) { case SLJIT_MOV: case SLJIT_MOV_U32: case SLJIT_MOV_S32: case SLJIT_MOV_P: flags = WORD_SIZE; break; case SLJIT_MOV_U8: flags = BYTE_SIZE; break; case SLJIT_MOV_S8: if (!(type & SLJIT_MEM_STORE)) is_type1_transfer = 0; flags = BYTE_SIZE | SIGNED; break; case SLJIT_MOV_U16: is_type1_transfer = 0; flags = HALF_SIZE; break; case SLJIT_MOV_S16: is_type1_transfer = 0; flags = HALF_SIZE | SIGNED; break; default: SLJIT_UNREACHABLE(); flags = WORD_SIZE; break; } if (!(type & SLJIT_MEM_STORE)) flags |= LOAD_DATA; SLJIT_ASSERT(is_type1_transfer == !!IS_TYPE1_TRANSFER(flags)); if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) { if (!is_type1_transfer && memw != 0) return SLJIT_ERR_UNSUPPORTED; } else { if (is_type1_transfer) { if (memw > 4095 || memw < -4095) return SLJIT_ERR_UNSUPPORTED; } else { if (memw > 255 || memw < -255) return SLJIT_ERR_UNSUPPORTED; } } if (type & SLJIT_MEM_SUPP) return SLJIT_SUCCESS; if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) { memw &= 0x3; inst = EMIT_DATA_TRANSFER(flags, 1, reg, mem & REG_MASK, RM(OFFS_REG(mem)) | (memw << 7)); if (is_type1_transfer) inst |= (1 << 25); if (type & SLJIT_MEM_PRE) inst |= (1 << 21); else inst ^= (1 << 24); return push_inst(compiler, inst); } inst = EMIT_DATA_TRANSFER(flags, 0, reg, mem & REG_MASK, 0); if (type & SLJIT_MEM_PRE) inst |= (1 << 21); else inst ^= (1 << 24); if (is_type1_transfer) { if (memw >= 0) inst |= (1 << 23); else memw = -memw; return push_inst(compiler, inst | memw); } if (memw >= 0) inst |= (1 << 23); else memw = -memw; return push_inst(compiler, inst | TYPE2_TRANSFER_IMM(memw)); } SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value) { struct sljit_const *const_; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value)); ADJUST_LOCAL_OFFSET(dst, dstw); dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG2; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, dst_r, TMP_PC, 0), init_value)); compiler->patches++; #else PTR_FAIL_IF(emit_imm(compiler, dst_r, init_value)); #endif const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const)); PTR_FAIL_IF(!const_); set_const(const_, compiler); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1)); return const_; } SLJIT_API_FUNC_ATTRIBUTE struct sljit_put_label* sljit_emit_put_label(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { struct sljit_put_label *put_label; sljit_s32 dst_r; CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_put_label(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); dst_r = SLOW_IS_REG(dst) ? dst : TMP_REG2; #if (defined SLJIT_CONFIG_ARM_V5 && SLJIT_CONFIG_ARM_V5) PTR_FAIL_IF(push_inst_with_unique_literal(compiler, EMIT_DATA_TRANSFER(WORD_SIZE | LOAD_DATA, 1, dst_r, TMP_PC, 0), 0)); compiler->patches++; #else PTR_FAIL_IF(emit_imm(compiler, dst_r, 0)); #endif put_label = (struct sljit_put_label*)ensure_abuf(compiler, sizeof(struct sljit_put_label)); PTR_FAIL_IF(!put_label); set_put_label(put_label, compiler, 0); if (dst & SLJIT_MEM) PTR_FAIL_IF(emit_op_mem(compiler, WORD_SIZE, TMP_REG2, dst, dstw, TMP_REG1)); return put_label; } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset) { inline_set_jump_addr(addr, executable_offset, new_target, 1); } SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset) { inline_set_const(addr, executable_offset, new_constant, 1); }