/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Utility functions used throughout sqlite. ** ** This file contains functions for allocating memory, comparing ** strings, and stuff like that. ** ** $Id$ */ #include "sqliteInt.h" #include #include /* ** If malloc() ever fails, this global variable gets set to 1. ** This causes the library to abort and never again function. */ int sqlite_malloc_failed = 0; /* ** If MEMORY_DEBUG is defined, then use versions of malloc() and ** free() that track memory usage and check for buffer overruns. */ #ifdef MEMORY_DEBUG /* ** For keeping track of the number of mallocs and frees. This ** is used to check for memory leaks. */ int sqlite_nMalloc; /* Number of sqliteMalloc() calls */ int sqlite_nFree; /* Number of sqliteFree() calls */ int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */ #if MEMORY_DEBUG>1 static int memcnt = 0; #endif /* ** Number of 32-bit guard words */ #define N_GUARD 1 /* ** Allocate new memory and set it to zero. Return NULL if ** no memory is available. */ void *sqliteMalloc_(int n, int bZero, char *zFile, int line){ void *p; int *pi; int i, k; if( sqlite_iMallocFail>=0 ){ sqlite_iMallocFail--; if( sqlite_iMallocFail==0 ){ sqlite_malloc_failed++; #if MEMORY_DEBUG>1 fprintf(stderr,"**** failed to allocate %d bytes at %s:%d\n", n, zFile,line); #endif sqlite_iMallocFail--; return 0; } } if( n==0 ) return 0; k = (n+sizeof(int)-1)/sizeof(int); pi = malloc( (N_GUARD*2+1+k)*sizeof(int)); if( pi==0 ){ sqlite_malloc_failed++; return 0; } sqlite_nMalloc++; for(i=0; i1 fprintf(stderr,"%06d malloc %d bytes at 0x%x from %s:%d\n", ++memcnt, n, (int)p, zFile,line); #endif return p; } /* ** Check to see if the given pointer was obtained from sqliteMalloc() ** and is able to hold at least N bytes. Raise an exception if this ** is not the case. ** ** This routine is used for testing purposes only. */ void sqliteCheckMemory(void *p, int N){ int *pi = p; int n, i, k; pi -= N_GUARD+1; for(i=0; i=0 && N1 fprintf(stderr,"%06d free %d bytes at 0x%x from %s:%d\n", ++memcnt, n, (int)p, zFile,line); #endif free(pi); } } /* ** Resize a prior allocation. If p==0, then this routine ** works just like sqliteMalloc(). If n==0, then this routine ** works just like sqliteFree(). */ void *sqliteRealloc_(void *oldP, int n, char *zFile, int line){ int *oldPi, *pi, i, k, oldN, oldK; void *p; if( oldP==0 ){ return sqliteMalloc_(n,1,zFile,line); } if( n==0 ){ sqliteFree_(oldP,zFile,line); return 0; } oldPi = oldP; oldPi -= N_GUARD+1; if( oldPi[0]!=0xdead1122 ){ fprintf(stderr,"Low-end memory corruption in realloc at 0x%x\n", (int)oldP); return 0; } oldN = oldPi[N_GUARD]; oldK = (oldN+sizeof(int)-1)/sizeof(int); for(i=0; ioldN ? oldN : n); if( n>oldN ){ memset(&((char*)p)[oldN], 0, n-oldN); } memset(oldPi, 0xab, (oldK+N_GUARD+2)*sizeof(int)); free(oldPi); #if MEMORY_DEBUG>1 fprintf(stderr,"%06d realloc %d to %d bytes at 0x%x to 0x%x at %s:%d\n", ++memcnt, oldN, n, (int)oldP, (int)p, zFile, line); #endif return p; } /* ** Make a duplicate of a string into memory obtained from malloc() ** Free the original string using sqliteFree(). ** ** This routine is called on all strings that are passed outside of ** the SQLite library. That way clients can free the string using free() ** rather than having to call sqliteFree(). */ void sqliteStrRealloc(char **pz){ char *zNew; if( pz==0 || *pz==0 ) return; zNew = malloc( strlen(*pz) + 1 ); if( zNew==0 ){ sqlite_malloc_failed++; sqliteFree(*pz); *pz = 0; } strcpy(zNew, *pz); sqliteFree(*pz); *pz = zNew; } /* ** Make a copy of a string in memory obtained from sqliteMalloc() */ char *sqliteStrDup_(const char *z, char *zFile, int line){ char *zNew; if( z==0 ) return 0; zNew = sqliteMalloc_(strlen(z)+1, 0, zFile, line); if( zNew ) strcpy(zNew, z); return zNew; } char *sqliteStrNDup_(const char *z, int n, char *zFile, int line){ char *zNew; if( z==0 ) return 0; zNew = sqliteMalloc_(n+1, 0, zFile, line); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } #endif /* MEMORY_DEBUG */ /* ** The following versions of malloc() and free() are for use in a ** normal build. */ #if !defined(MEMORY_DEBUG) /* ** Allocate new memory and set it to zero. Return NULL if ** no memory is available. See also sqliteMallocRaw(). */ void *sqliteMalloc(int n){ void *p; if( (p = malloc(n))==0 ){ if( n>0 ) sqlite_malloc_failed++; }else{ memset(p, 0, n); } return p; } /* ** Allocate new memory but do not set it to zero. Return NULL if ** no memory is available. See also sqliteMalloc(). */ void *sqliteMallocRaw(int n){ void *p; if( (p = malloc(n))==0 ){ if( n>0 ) sqlite_malloc_failed++; } return p; } /* ** Free memory previously obtained from sqliteMalloc() */ void sqliteFree(void *p){ if( p ){ free(p); } } /* ** Resize a prior allocation. If p==0, then this routine ** works just like sqliteMalloc(). If n==0, then this routine ** works just like sqliteFree(). */ void *sqliteRealloc(void *p, int n){ void *p2; if( p==0 ){ return sqliteMalloc(n); } if( n==0 ){ sqliteFree(p); return 0; } p2 = realloc(p, n); if( p2==0 ){ sqlite_malloc_failed++; } return p2; } /* ** Make a copy of a string in memory obtained from sqliteMalloc() */ char *sqliteStrDup(const char *z){ char *zNew; if( z==0 ) return 0; zNew = sqliteMallocRaw(strlen(z)+1); if( zNew ) strcpy(zNew, z); return zNew; } char *sqliteStrNDup(const char *z, int n){ char *zNew; if( z==0 ) return 0; zNew = sqliteMallocRaw(n+1); if( zNew ){ memcpy(zNew, z, n); zNew[n] = 0; } return zNew; } #endif /* !defined(MEMORY_DEBUG) */ /* ** Create a string from the 2nd and subsequent arguments (up to the ** first NULL argument), store the string in memory obtained from ** sqliteMalloc() and make the pointer indicated by the 1st argument ** point to that string. The 1st argument must either be NULL or ** point to memory obtained from sqliteMalloc(). */ void sqliteSetString(char **pz, ...){ va_list ap; int nByte; const char *z; char *zResult; if( pz==0 ) return; nByte = 1; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ nByte += strlen(z); } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMallocRaw( nByte ); if( zResult==0 ){ return; } *zResult = 0; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ strcpy(zResult, z); zResult += strlen(zResult); } va_end(ap); #ifdef MEMORY_DEBUG #if MEMORY_DEBUG>1 fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz); #endif #endif } /* ** Works like sqliteSetString, but each string is now followed by ** a length integer which specifies how much of the source string ** to copy (in bytes). -1 means use the whole string. The 1st ** argument must either be NULL or point to memory obtained from ** sqliteMalloc(). */ void sqliteSetNString(char **pz, ...){ va_list ap; int nByte; const char *z; char *zResult; int n; if( pz==0 ) return; nByte = 0; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ n = va_arg(ap, int); if( n<=0 ) n = strlen(z); nByte += n; } va_end(ap); sqliteFree(*pz); *pz = zResult = sqliteMallocRaw( nByte + 1 ); if( zResult==0 ) return; va_start(ap, pz); while( (z = va_arg(ap, const char*))!=0 ){ n = va_arg(ap, int); if( n<=0 ) n = strlen(z); strncpy(zResult, z, n); zResult += n; } *zResult = 0; #ifdef MEMORY_DEBUG #if MEMORY_DEBUG>1 fprintf(stderr,"string at 0x%x is %s\n", (int)*pz, *pz); #endif #endif va_end(ap); } /* ** Add an error message to pParse->zErrMsg and increment pParse->nErr. ** The following formatting characters are allowed: ** ** %s Insert a string ** %z A string that should be freed after use ** %d Insert an integer ** %T Insert a token ** %S Insert the first element of a SrcList */ void sqliteErrorMsg(Parse *pParse, const char *zFormat, ...){ va_list ap; pParse->nErr++; sqliteFree(pParse->zErrMsg); va_start(ap, zFormat); pParse->zErrMsg = sqliteVMPrintf(zFormat, ap); va_end(ap); } /* ** Convert an SQL-style quoted string into a normal string by removing ** the quote characters. The conversion is done in-place. If the ** input does not begin with a quote character, then this routine ** is a no-op. ** ** 2002-Feb-14: This routine is extended to remove MS-Access style ** brackets from around identifers. For example: "[a-b-c]" becomes ** "a-b-c". */ void sqliteDequote(char *z){ int quote; int i, j; if( z==0 ) return; quote = z[0]; switch( quote ){ case '\'': break; case '"': break; case '[': quote = ']'; break; default: return; } for(i=1, j=0; z[i]; i++){ if( z[i]==quote ){ if( z[i+1]==quote ){ z[j++] = quote; i++; }else{ z[j++] = 0; break; } }else{ z[j++] = z[i]; } } } /* An array to map all upper-case characters into their corresponding ** lower-case character. */ static unsigned char UpperToLower[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 97, 98, 99,100,101,102,103, 104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121, 122, 91, 92, 93, 94, 95, 96, 97, 98, 99,100,101,102,103,104,105,106,107, 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, 144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161, 162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179, 180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197, 198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215, 216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233, 234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251, 252,253,254,255 }; /* ** This function computes a hash on the name of a keyword. ** Case is not significant. */ int sqliteHashNoCase(const char *z, int n){ int h = 0; if( n<=0 ) n = strlen(z); while( n > 0 ){ h = (h<<3) ^ h ^ UpperToLower[(unsigned char)*z++]; n--; } return h & 0x7fffffff; } /* ** Some systems have stricmp(). Others have strcasecmp(). Because ** there is no consistency, we will define our own. */ int sqliteStrICmp(const char *zLeft, const char *zRight){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return UpperToLower[*a] - UpperToLower[*b]; } int sqliteStrNICmp(const char *zLeft, const char *zRight, int N){ register unsigned char *a, *b; a = (unsigned char *)zLeft; b = (unsigned char *)zRight; while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; } /* ** Return TRUE if z is a pure numeric string. Return FALSE if the ** string contains any character which is not part of a number. ** ** Am empty string is considered non-numeric. */ int sqliteIsNumber(const char *z){ if( *z=='-' || *z=='+' ) z++; if( !isdigit(*z) ){ return 0; } z++; while( isdigit(*z) ){ z++; } if( *z=='.' ){ z++; if( !isdigit(*z) ) return 0; while( isdigit(*z) ){ z++; } } if( *z=='e' || *z=='E' ){ z++; if( *z=='+' || *z=='-' ) z++; if( !isdigit(*z) ) return 0; while( isdigit(*z) ){ z++; } } return *z==0; } /* ** The string z[] is an ascii representation of a real number. ** Convert this string to a double. ** ** This routine assumes that z[] really is a valid number. If it ** is not, the result is undefined. ** ** This routine is used instead of the library atof() function because ** the library atof() might want to use "," as the decimal point instead ** of "." depending on how locale is set. But that would cause problems ** for SQL. So this routine always uses "." regardless of locale. */ double sqliteAtoF(const char *z, const char **pzEnd){ int sign = 1; LONGDOUBLE_TYPE v1 = 0.0; if( *z=='-' ){ sign = -1; z++; }else if( *z=='+' ){ z++; } while( isdigit(*z) ){ v1 = v1*10.0 + (*z - '0'); z++; } if( *z=='.' ){ LONGDOUBLE_TYPE divisor = 1.0; z++; while( isdigit(*z) ){ v1 = v1*10.0 + (*z - '0'); divisor *= 10.0; z++; } v1 /= divisor; } if( *z=='e' || *z=='E' ){ int esign = 1; int eval = 0; LONGDOUBLE_TYPE scale = 1.0; z++; if( *z=='-' ){ esign = -1; z++; }else if( *z=='+' ){ z++; } while( isdigit(*z) ){ eval = eval*10 + *z - '0'; z++; } while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } if( esign<0 ){ v1 /= scale; }else{ v1 *= scale; } } if( pzEnd ) *pzEnd = z; return sign<0 ? -v1 : v1; } /* ** The string zNum represents an integer. There might be some other ** information following the integer too, but that part is ignored. ** If the integer that the prefix of zNum represents will fit in a ** 32-bit signed integer, return TRUE. Otherwise return FALSE. ** ** This routine returns FALSE for the string -2147483648 even that ** that number will, in theory fit in a 32-bit integer. But positive ** 2147483648 will not fit in 32 bits. So it seems safer to return ** false. */ int sqliteFitsIn32Bits(const char *zNum){ int i, c; if( *zNum=='-' || *zNum=='+' ) zNum++; for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} return i<10 || (i==10 && memcmp(zNum,"2147483647",10)<=0); } /* This comparison routine is what we use for comparison operations ** between numeric values in an SQL expression. "Numeric" is a little ** bit misleading here. What we mean is that the strings have a ** type of "numeric" from the point of view of SQL. The strings ** do not necessarily contain numbers. They could contain text. ** ** If the input strings both look like actual numbers then they ** compare in numerical order. Numerical strings are always less ** than non-numeric strings so if one input string looks like a ** number and the other does not, then the one that looks like ** a number is the smaller. Non-numeric strings compare in ** lexigraphical order (the same order as strcmp()). */ int sqliteCompare(const char *atext, const char *btext){ int result; int isNumA, isNumB; if( atext==0 ){ return -1; }else if( btext==0 ){ return 1; } isNumA = sqliteIsNumber(atext); isNumB = sqliteIsNumber(btext); if( isNumA ){ if( !isNumB ){ result = -1; }else{ double rA, rB; rA = sqliteAtoF(atext, 0); rB = sqliteAtoF(btext, 0); if( rArB ){ result = +1; }else{ result = 0; } } }else if( isNumB ){ result = +1; }else { result = strcmp(atext, btext); } return result; } /* ** This routine is used for sorting. Each key is a list of one or more ** null-terminated elements. The list is terminated by two nulls in ** a row. For example, the following text is a key with three elements ** ** Aone\000Dtwo\000Athree\000\000 ** ** All elements begin with one of the characters "+-AD" and end with "\000" ** with zero or more text elements in between. Except, NULL elements ** consist of the special two-character sequence "N\000". ** ** Both arguments will have the same number of elements. This routine ** returns negative, zero, or positive if the first argument is less ** than, equal to, or greater than the first. (Result is a-b). ** ** Each element begins with one of the characters "+", "-", "A", "D". ** This character determines the sort order and collating sequence: ** ** + Sort numerically in ascending order ** - Sort numerically in descending order ** A Sort as strings in ascending order ** D Sort as strings in descending order. ** ** For the "+" and "-" sorting, pure numeric strings (strings for which the ** isNum() function above returns TRUE) always compare less than strings ** that are not pure numerics. Non-numeric strings compare in memcmp() ** order. This is the same sort order as the sqliteCompare() function ** above generates. ** ** The last point is a change from version 2.6.3 to version 2.7.0. In ** version 2.6.3 and earlier, substrings of digits compare in numerical ** and case was used only to break a tie. ** ** Elements that begin with 'A' or 'D' compare in memcmp() order regardless ** of whether or not they look like a number. ** ** Note that the sort order imposed by the rules above is the same ** from the ordering defined by the "<", "<=", ">", and ">=" operators ** of expressions and for indices. This was not the case for version ** 2.6.3 and earlier. */ int sqliteSortCompare(const char *a, const char *b){ int res = 0; int isNumA, isNumB; int dir = 0; while( res==0 && *a && *b ){ if( a[0]=='N' || b[0]=='N' ){ if( a[0]==b[0] ){ a += 2; b += 2; continue; } if( a[0]=='N' ){ dir = b[0]; res = -1; }else{ dir = a[0]; res = +1; } break; } assert( a[0]==b[0] ); if( (dir=a[0])=='A' || a[0]=='D' ){ res = strcmp(&a[1],&b[1]); if( res ) break; }else{ isNumA = sqliteIsNumber(&a[1]); isNumB = sqliteIsNumber(&b[1]); if( isNumA ){ double rA, rB; if( !isNumB ){ res = -1; break; } rA = sqliteAtoF(&a[1], 0); rB = sqliteAtoF(&b[1], 0); if( rArB ){ res = +1; break; } }else if( isNumB ){ res = +1; break; }else{ res = strcmp(&a[1],&b[1]); if( res ) break; } } a += strlen(&a[1]) + 2; b += strlen(&b[1]) + 2; } if( dir=='-' || dir=='D' ) res = -res; return res; } /* ** Some powers of 64. These constants are needed in the ** sqliteRealToSortable() routine below. */ #define _64e3 (64.0 * 64.0 * 64.0) #define _64e4 (64.0 * 64.0 * 64.0 * 64.0) #define _64e15 (_64e3 * _64e4 * _64e4 * _64e4) #define _64e16 (_64e4 * _64e4 * _64e4 * _64e4) #define _64e63 (_64e15 * _64e16 * _64e16 * _64e16) #define _64e64 (_64e16 * _64e16 * _64e16 * _64e16) /* ** The following procedure converts a double-precision floating point ** number into a string. The resulting string has the property that ** two such strings comparied using strcmp() or memcmp() will give the ** same results as a numeric comparison of the original floating point ** numbers. ** ** This routine is used to generate database keys from floating point ** numbers such that the keys sort in the same order as the original ** floating point numbers even though the keys are compared using ** memcmp(). ** ** The calling function should have allocated at least 14 characters ** of space for the buffer z[]. */ void sqliteRealToSortable(double r, char *z){ int neg; int exp; int cnt = 0; /* This array maps integers between 0 and 63 into base-64 digits. ** The digits must be chosen such at their ASCII codes are increasing. ** This means we can not use the traditional base-64 digit set. */ static const char zDigit[] = "0123456789" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "|~"; if( r<0.0 ){ neg = 1; r = -r; *z++ = '-'; } else { neg = 0; *z++ = '0'; } exp = 0; if( r==0.0 ){ exp = -1024; }else if( r<(0.5/64.0) ){ while( r < 0.5/_64e64 && exp > -961 ){ r *= _64e64; exp -= 64; } while( r < 0.5/_64e16 && exp > -1009 ){ r *= _64e16; exp -= 16; } while( r < 0.5/_64e4 && exp > -1021 ){ r *= _64e4; exp -= 4; } while( r < 0.5/64.0 && exp > -1024 ){ r *= 64.0; exp -= 1; } }else if( r>=0.5 ){ while( r >= 0.5*_64e63 && exp < 960 ){ r *= 1.0/_64e64; exp += 64; } while( r >= 0.5*_64e15 && exp < 1008 ){ r *= 1.0/_64e16; exp += 16; } while( r >= 0.5*_64e3 && exp < 1020 ){ r *= 1.0/_64e4; exp += 4; } while( r >= 0.5 && exp < 1023 ){ r *= 1.0/64.0; exp += 1; } } if( neg ){ exp = -exp; r = -r; } exp += 1024; r += 0.5; if( exp<0 ) return; if( exp>=2048 || r>=1.0 ){ strcpy(z, "~~~~~~~~~~~~"); return; } *z++ = zDigit[(exp>>6)&0x3f]; *z++ = zDigit[exp & 0x3f]; while( r>0.0 && cnt<10 ){ int digit; r *= 64.0; digit = (int)r; assert( digit>=0 && digit<64 ); *z++ = zDigit[digit & 0x3f]; r -= digit; cnt++; } *z = 0; } #ifdef SQLITE_UTF8 /* ** X is a pointer to the first byte of a UTF-8 character. Increment ** X so that it points to the next character. This only works right ** if X points to a well-formed UTF-8 string. */ #define sqliteNextChar(X) while( (0xc0&*++(X))==0x80 ){} #define sqliteCharVal(X) sqlite_utf8_to_int(X) #else /* !defined(SQLITE_UTF8) */ /* ** For iso8859 encoding, the next character is just the next byte. */ #define sqliteNextChar(X) (++(X)); #define sqliteCharVal(X) ((int)*(X)) #endif /* defined(SQLITE_UTF8) */ #ifdef SQLITE_UTF8 /* ** Convert the UTF-8 character to which z points into a 31-bit ** UCS character. This only works right if z points to a well-formed ** UTF-8 string. */ static int sqlite_utf8_to_int(const unsigned char *z){ int c; static const int initVal[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 0, 1, 254, 255, }; c = initVal[*(z++)]; while( (0xc0&*z)==0x80 ){ c = (c<<6) | (0x3f&*(z++)); } return c; } #endif /* ** Compare two UTF-8 strings for equality where the first string can ** potentially be a "glob" expression. Return true (1) if they ** are the same and false (0) if they are different. ** ** Globbing rules: ** ** '*' Matches any sequence of zero or more characters. ** ** '?' Matches exactly one character. ** ** [...] Matches one character from the enclosed list of ** characters. ** ** [^...] Matches one character not in the enclosed list. ** ** With the [...] and [^...] matching, a ']' character can be included ** in the list by making it the first character after '[' or '^'. A ** range of characters can be specified using '-'. Example: ** "[a-z]" matches any single lower-case letter. To match a '-', make ** it the last character in the list. ** ** This routine is usually quick, but can be N**2 in the worst case. ** ** Hints: to match '*' or '?', put them in "[]". Like this: ** ** abc[*]xyz Matches "abc*xyz" only */ int sqliteGlobCompare(const unsigned char *zPattern, const unsigned char *zString){ register int c; int invert; int seen; int c2; while( (c = *zPattern)!=0 ){ switch( c ){ case '*': while( (c=zPattern[1]) == '*' || c == '?' ){ if( c=='?' ){ if( *zString==0 ) return 0; sqliteNextChar(zString); } zPattern++; } if( c==0 ) return 1; if( c=='[' ){ while( *zString && sqliteGlobCompare(&zPattern[1],zString)==0 ){ sqliteNextChar(zString); } return *zString!=0; }else{ while( (c2 = *zString)!=0 ){ while( c2 != 0 && c2 != c ){ c2 = *++zString; } if( c2==0 ) return 0; if( sqliteGlobCompare(&zPattern[1],zString) ) return 1; sqliteNextChar(zString); } return 0; } case '?': { if( *zString==0 ) return 0; sqliteNextChar(zString); zPattern++; break; } case '[': { int prior_c = 0; seen = 0; invert = 0; c = sqliteCharVal(zString); if( c==0 ) return 0; c2 = *++zPattern; if( c2=='^' ){ invert = 1; c2 = *++zPattern; } if( c2==']' ){ if( c==']' ) seen = 1; c2 = *++zPattern; } while( (c2 = sqliteCharVal(zPattern))!=0 && c2!=']' ){ if( c2=='-' && zPattern[1]!=']' && zPattern[1]!=0 && prior_c>0 ){ zPattern++; c2 = sqliteCharVal(zPattern); if( c>=prior_c && c<=c2 ) seen = 1; prior_c = 0; }else if( c==c2 ){ seen = 1; prior_c = c2; }else{ prior_c = c2; } sqliteNextChar(zPattern); } if( c2==0 || (seen ^ invert)==0 ) return 0; sqliteNextChar(zString); zPattern++; break; } default: { if( c != *zString ) return 0; zPattern++; zString++; break; } } } return *zString==0; } /* ** Compare two UTF-8 strings for equality using the "LIKE" operator of ** SQL. The '%' character matches any sequence of 0 or more ** characters and '_' matches any single character. Case is ** not significant. ** ** This routine is just an adaptation of the sqliteGlobCompare() ** routine above. */ int sqliteLikeCompare(const unsigned char *zPattern, const unsigned char *zString){ register int c; int c2; while( (c = UpperToLower[*zPattern])!=0 ){ switch( c ){ case '%': { while( (c=zPattern[1]) == '%' || c == '_' ){ if( c=='_' ){ if( *zString==0 ) return 0; sqliteNextChar(zString); } zPattern++; } if( c==0 ) return 1; c = UpperToLower[c]; while( (c2=UpperToLower[*zString])!=0 ){ while( c2 != 0 && c2 != c ){ c2 = UpperToLower[*++zString]; } if( c2==0 ) return 0; if( sqliteLikeCompare(&zPattern[1],zString) ) return 1; sqliteNextChar(zString); } return 0; } case '_': { if( *zString==0 ) return 0; sqliteNextChar(zString); zPattern++; break; } default: { if( c != UpperToLower[*zString] ) return 0; zPattern++; zString++; break; } } } return *zString==0; } /* ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN ** when this routine is called. ** ** This routine is a attempt to detect if two threads use the ** same sqlite* pointer at the same time. There is a race ** condition so it is possible that the error is not detected. ** But usually the problem will be seen. The result will be an ** error which can be used to debug the application that is ** using SQLite incorrectly. ** ** Ticket #202: If db->magic is not a valid open value, take care not ** to modify the db structure at all. It could be that db is a stale ** pointer. In other words, it could be that there has been a prior ** call to sqlite_close(db) and db has been deallocated. And we do ** not want to write into deallocated memory. */ int sqliteSafetyOn(sqlite *db){ if( db->magic==SQLITE_MAGIC_OPEN ){ db->magic = SQLITE_MAGIC_BUSY; return 0; }else if( db->magic==SQLITE_MAGIC_BUSY || db->magic==SQLITE_MAGIC_ERROR || db->want_to_close ){ db->magic = SQLITE_MAGIC_ERROR; db->flags |= SQLITE_Interrupt; } return 1; } /* ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY ** when this routine is called. */ int sqliteSafetyOff(sqlite *db){ if( db->magic==SQLITE_MAGIC_BUSY ){ db->magic = SQLITE_MAGIC_OPEN; return 0; }else if( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ERROR || db->want_to_close ){ db->magic = SQLITE_MAGIC_ERROR; db->flags |= SQLITE_Interrupt; } return 1; } /* ** Check to make sure we are not currently executing an sqlite_exec(). ** If we are currently in an sqlite_exec(), return true and set ** sqlite.magic to SQLITE_MAGIC_ERROR. This will cause a complete ** shutdown of the database. ** ** This routine is used to try to detect when API routines are called ** at the wrong time or in the wrong sequence. */ int sqliteSafetyCheck(sqlite *db){ if( db->pVdbe!=0 ){ db->magic = SQLITE_MAGIC_ERROR; return 1; } return 0; }