Lines Matching refs:I

50 BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
51 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
53 BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
54 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
56 BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
57 I<r> may be the same B<BIGNUM> as I<a> or I<b>.
60 BN_sqr() takes the square of I<a> and places the result in I<r>
61 (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
64 BN_div() divides I<a> by I<d> and places the result in I<dv> and the
65 remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
67 The result is rounded towards zero; thus if I<a> is negative, the
71 BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
73 BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
74 remainder in I<r>.
76 BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
77 result in I<r>.
79 BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
80 nonnegative result in I<r>.
82 BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
83 remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
84 the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
89 BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
90 result in I<r>.
92 BN_mod_sqrt() returns the modular square root of I<a> such that
93 C<in^2 = a (mod p)>. The modulus I<p> must be a
95 The result is stored into I<in> which can be NULL. The result will be
98 BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
102 BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
107 BN_gcd() computes the greatest common divisor of I<a> and I<b> and
108 places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
109 I<b>.
111 For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
124 The BN_mod_sqrt() returns the result (possibly incorrect if I<p> is